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The climate issue, with respect to how humans are 
influencing the climate system, can be segmented into 
three distinct hypotheses. These are: 

1. The human influence is minimal and natural variations 
dominate climate variations on all time scales; 

2. While natural variations are important, the human 
influence is significant and involves a diverse range of 
first-order climate forcings (including, but not limited to 
the human input of CO2 ); 

3. The human influence is dominated by the emissions 
into the atmosphere of greenhouse gases, particularly 
carbon dioxide. 
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traditional global mean TOA radiative forcing 
concept has some important limitations, 
which have come increasingly to light over 
the past decade. The concept is inadequate 
for some forcing agents, such as absorbing 
aerosols and land-use changes, that may 
have regional climate impacts much greater 
than would be predicted from TOA radiative 
forcing. Also, it diagnoses only one measure 
of climate change - global mean surface 
temperature response - while offering little 
information on regional climate change or 
precipitation. 
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Wu, Z. - X., and Newell, R. E. 1998 Influence of sea surface temperature of air 
temperature in the tropic. Climate Dynamics 14, 275-290.
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Figure 1. Shortwave aerosol direct radiative forcing (ADRF) for top-of atmosphere (TOA), 
surface, and atmosphere.  From: Matsui, T., and R.A. Pielke Sr., 2006: Measurement-based 
estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res. Letts., 33, 
L11813, doi:10.1029/2006GL025974. 
http://climatesci.colorado.edu/publications/pdf/R-312.pdf



Figure 2. Vertical profile of atmospheric heating rate (K day-1) due to shortwave ADRF. 
Vertical coordinate is pressure level (mb). From: Matsui, T., and R.A. Pielke Sr., 2006: 
Measurement-based estimation of the spatial gradient of aerosol radiative forcing. 
Geophys. Res. Letts., 33, L11813, doi:10.1029/2006GL025974. 
http://climatesci.colorado.edu/publications/pdf/R-312.pdf



Figure 3. Shortwave aerosol indirect radiative forcing (AIRF) for top-of atmosphere (TOA), 
surface, and atmosphere. From: Matsui, T., and R.A. Pielke Sr., 2006: Measurement- 
based estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res. 
Letts., 33, L11813, doi:10.1029/2006GL025974. 
http://climatesci.colorado.edu/publications/pdf/R-312.pdf



Figure 4. Comparison of Mean TOA radiative forcing between infrared GRF, shortwave ADRF, 
and shortwave AIRF. From: Matsui, T., and R.A. Pielke Sr., 2006: Measurement-based 
estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res. Letts., 33, 
L11813, doi:10.1029/2006GL025974.  
http://climatesci.colorado.edu/publications/pdf/R-312.pdf
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Figure 5. Comparison of the meridional and the zonal component of NGoRF between 
infrared GRF, shortwave ADRF, and shortwave AIRF for atmosphere and surface. From: 
Matsui, T., and R.A. Pielke Sr., 2006: Measurement-based estimation of the spatial gradient 
of aerosol radiative forcing. Geophys. Res. Letts., 33, L11813, doi:10.1029/2006GL025974. 
http://climatesci.colorado.edu/publications/pdf/R-312.pdf
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In Matsui and Pielke Sr. (2006), it was 
found from observations of the spatial 
distribution of aerosols in the atmosphere 
in the lower latitudes, that the aerosol 
effect on atmospheric circulations, as a 
result of their alteration in the heating of 
regions of the atmosphere, is 60 times 
greater than due to the heating effect of 
the human addition of well-mixed 
greenhouse gases. 
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Matsui, T., and R.A. Pielke Sr., 2006: Measurement-based estimation of the spatial 
gradient of aerosol radiative forcing. Geophys. Res. Letts., 33, L11813, 
doi:10.1029/2006GL025974.
http://climatesci.colorado.edu/publications/pdf/R-312.pdf
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Figure 1: Four-year rate of the global upper 700 m of ocean heat changes in 
Joules at monthly time intervals. One standard error value is also shown. 
(Figure courtesy of Josh Willis of NASA’s Jet Propulsion Laboratory).
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