The Need To Asse

patlal Variations'In CI|E :._[9-
\Clngs Suggestions Fo
7 ‘%ure Research

University o C
Professor Emeritus, Cao

Presented at the National Research Couﬁ

Solar Influences on Recently Observed
Washington, DC _
December 8, 2008 B

e o .__.','l"_"_; — "_T..,:"'-m"_--—-_:_—: Y



“ui ‘.’

ihecl -‘l"i,'J:)lI-‘ Wit
nfuenc 1) TENAIITE
three dlst r*mn/u).or

%‘,?

—

10W hurmanseara
a2 e segmeani2d inio

I
ot
[l c\[ €,

2

—
=

(v

v) -
@ e

. The human inf ey 20 rrinlrnzd ane natural variations
dominate climatem r,mr:giifon;‘,r ofl 2l tirme scales:
s J;
. While natural variations. a _,m: ENTUTEn

influence isisignificant.andi vx -'f'icjpver:;: [ele)e of
first-arder climate fercings (mcludm‘g QL nor lignited o
the human input off €Oy); g‘q |

- J.

. The human influence Is domlnated byt S2missions
Into the atmosphere of greenheUuSse gasesy PAartiE i) "

-~-carbon d|0X|de i R

e e St e o A



RADIATIVE
FO RCBNFG

CLIMATE
CHANGE

EXPANDING
THE
CONCEPT
AND
ADDRESSING

UNCERTAINTIES

3
"’.'"-'. i
<

National Research Ceuncil, 2005:
Radiative Forcing of Climate Change:
Expanding the Concept and
Addressing Uncertainties, Committee
on Radiative Forcing Effects on
C‘&lmate Cllmate Research Committee,

ﬁ_.m__‘_ : 224 pp.
n 0o Jw VW, nap edu/catalo/11175 html



Atmospharo
+ Torrporsuae
« Mumiaty, clouds, and winds
- Proeciptaton
- AlFrripharic rate Gan and
M0road] Sty Son

FIGURE 1-1 The climarte system, consisting of the atmosphere, oceans, land, and
cryosphere. Important state variables for cach sphere of the climate system are
listed in the boxes. For the purposes of this report, the Sun, volcanic emissions, and
human-caused emissions of greenhouse gases and changes to the land surface are

considered external to the climate system.

From: National Research Council, 2005: Radiative Forcing o Cl
Change: Expanding the Concept and Addressing UncertaintieSyCommitiee
on Radiative Forcing Effects on Climate, Climate Research Committee, 224
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INTRODUCTION

NATURAL FORCING AGENTS

PROCESSES + Emissions of greenhouse gases and precursors, aerosols and
Sun, ordl, volcances procursors, and biogeochamically active gases
* Solar rradance and insolation changes
+ Land cover changes
HUMAN
| 7

ACTIVITIES Nt
< Posivssce raciat CHANGE IN CLIMATE
 Industrisl practioss Forchd | SYSTEM COMPONENTS
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Forcing indirect
Radiative

l Forcing
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CLIMATE RESPONSE
Temperature, proCpLation, vegotabon, otc

FIGURE 1-2 Conceptual framework of climate forcing, response, and feedbacks
under present-day climate conditions. Examples of human acrivities, forcing agents,
climate system components, and variables that can be involved in climate response

are provided in the lists in each box.
: . e ; .
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Despite all... [its]... advantages, the:
traditional global mean TOA radiativexfi
concept has some important limitations;
~whichihave come increasingly to light over:
thie past decade. The concept is madequate
@Irseme forcing agents, such as absorbing
Z2el0sels and land-use changes, that may
ave riegion 3l .@Iimate Impacts much greater
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Wu, Z. - X., and Newell, R. E. 1998 Influence of sea surface temp
temperature in the tropic. Climate Dynamics 14, 275-290.
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Sreflgnztivetizrions in radiztive foreing may have imporant egional
and global clima ““Ifrlyllcsmon:; Iz ara not resolved by the concept of
glebalimeanirauie W‘“ foreing.”
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. THE REGIONAL ALTERATIGNUN
. TROPOSPHERIC DIABATIC

. HEATING HAS A GREATER"
SINFLUENCE ON THE CLIMATE
SYSTEM THAN A CHANGE IN
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TOA ADRF (Mean——1 59W/m?)

120W GOW 0 HOE
Surface ADRF (Meun——S 12W/m")

Atmosphere ADRF (Meun 3 53W/m)

Figure 1. Shortwave aerosol direct radiative forcing (ADRF) for top-ofiatmosp OA),"'E
surface, and atmosphere. From: Matsui, T., and R.A. Pielke Sr., 2006: Measwased
estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res. Letts., 33,
L11813, doi:10.1029/2006GL025974.

http:#elimatesci. colorado edu/publlcatlons/pdf/R 312.pdf
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Figure 2. Vertical profile of atmospheric heating rate (K day') due to shert'\)"\'/gve RF.
Vertical coordinate is pressure level (mb). From: Matsui, T., and R.A. Pielke S|
Measurement-based estimation of the spatial gradient of aerosol radiative forcing.
Geophys. Res. Letts., 33, L11813, doi:10.1029/2006GL025974.
http://climatesci.colorado.edu/publications/pdf/R-312.pdf
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TOA AIRF (Mean——1 38W/m)
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Surfclce AIRF (Meun——1 34W/m)

Figure 3. Shortwave aerosol indirect radiative forcing (AIRF) for top-of atmos
surface, and atmosphere. From: Matsui, T., and R.A. Pielke Sr., 2006: Measurement=
based estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res.
Letts., 33, 111813, doi:10.1029/2006GL025974.
http://climatesci.colorade.edu/publicatioRs/pdfR-312. pdf
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Figure 4. Comparison of Mean TOA radiative forcing between infrared GRF; sShe
and shortwave AIRF. From: Matsui, T., and R.A. Pielke Sr., 2006: Measuremenw
estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res. Letts., 33,
111813, doi:10.1029/2006GL025974.

http://elimatesci.colorado.edu/publications/

df/R-312.pdf
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Figure 5. Comparison of the meridional and the zonal component of NGORF b
infrared GRF, shortwave ADRF, and shortwave AIRF for atmosphere and su”m:
Matsui, T., and R.A. Pielke Sr., 2006: Measurement-based estimation of the Spatial gradient
of aerosol radiative forcing. Geophys. Res. Letts., 33, L11813, doi:10.1029/2006GL025974.
http:#climatesci.colorado.edu/publications/pdf/R-312.pdf
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Matsui, T., and R.A. Pielke Sr., 2006: Measurement-based estima#
gradient of aerosol radiative forcing. Geophys. Res. Letts., 33, L.

doi:10.1029/2006GL025974.
http://climatesci.colorado.edu/publications/pdf/R-312.pdf
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Figure 1. Four-year rate of the global upper 700 m of ocean heat“s in
Joules at monthly time intervals. One standard error value IS alSe"ShHowWn:
(Figure courtesy of Josh Willis of NASA’s Jet Propulsion Laboratory).




RapiaTive Forcing COMPONENTS

RF values (W m®)

1.66 [1.49 to 1.83]

0.48 [0.43 to 0.53]
0.16 [0.14 to 0.18]

-0.05 [-0.15 to 0.05]

Qe 0.35 [0.25 to 0.65]

Stratospheric water
vapour from GHy 0.07 [0.02 to 0.12]

= 0.2 [-0.4 10 0.0]
Surface albedo . 0.1[0.010 0.2]

Direct effect : 0.5 [-0.9 to -0.1]
Total

Asrosol cmmm S -0.7 [-1.8 to -0.3]

Linear contrails 0.01 [0.003 to 0.03]

Solar iradiance 0.12 [0.06 to 0.30]

PHY-LOM L2002 D0dI@

Total net

anthroaea 1o 1.6 [0.6 10 2.4]

-2

Radiative Forcing (W m2)

Figure SPM.2. Global average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic carbon dioxide (CO,), methane
(CH.,), nitrous oxide (N,0) and other important agents and mechanisms, together with the typical geographical extent (spatial scale} of
the forcing and the assessed level of scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also
shown. These require summing asymmetric uncertainty estimates from the component terms, and cannot be obtained by simple addition.
Additional forcing factors not included here are considered to have a very low LOSU. Volcanic aerosols contribute an additional natural
forcing but are not included in this figure due to their episodic nature. The range for finear contrails does not inciude other possible effects
of aviation on cloudiness. (2.8, Figure 2.20}




2007 IPCC Total
Radiative Forcing =
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IN CONCLUSION!
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 ofMike Hollingshead
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