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Abstract: Soon (2005) showed that the variable total solar irradiance (TSI) could 
explain, rather surprisingly, well over 75% of the variance for the decadally smoothed 
Arctic-wide surface air temperature over the past 130 years. The present paper provides 
additional empirical evidence for this physical connection, both through several newly 
published high-resolution paleo-proxy records and through robust climate-process mod-
eling outputs. This paper proposes a mechanistic explanation, involving: (1) the variable 
strength of the Atlantic meridional overturning circulation (MOC) or thermohaline circu-
lation (THC); (2) the shift and modulation of the Inter-Tropical Convergence Zone (ITCZ) 
rainbelt and tropical Atlantic ocean conditions; and (3) the intensity of the wind-driven 
subtropical and subpolar gyre circulation, across both the North Atlantic and North 
Pacific. A unique test of this proposed solar TSI–Arctic thermal–salinity–cryospheric cou-
pling mechanism is the 5- to 20-year delay effect on the peak Atlantic MOC flow rate 
centered near 30–35°N, and on sea surface temperature (SST) for the tropical Atlantic. The 
solar Arctic–mediated climate mechanism on multidecadal to centennial timescales pre-
sented here can be compared with and differentiated from both the related solar TSI and 
UV irradiance forcing on decadal timescales. The ultimate goal of this research is to gain 
sufficient mechanistic details so that the proposed solar–Arctic climate connection on 
multidecadal to centennial timescales can be confirmed or falsified. A further incentive is 
to expand this physical connection to longer, millennial-scale variability as motivated by 
the multiscale climate interactions shown by Braun et al. (2005), Weng (2005), and Dima 
and Lohmann (2009). [Key words: solar–Arctic climate connection, total solar irradiance, 
Atlantic meridional overturning circulation, climate variability.]

THE SOLAR ARCTIC-MEDIATED CLIMATE VARIATION ON MULTIDECADAL
TO CENTENNIAL TIMESCALES

Paleoclimatic proxies show ubiquitous, multidecadal to centennial-scale vari-
abilities that may ultimately be associated with the persistent forcing by solar irradi-
ance variability as properly projected and amplified through the annual progression 
of the Earth around the Sun (Table A1, Appendix). The present study indirectly 
assumes the optimal climatic response filter of the Earth ocean-atmosphere-ice sys-
tem to peak around such multidecadal to centennial scales, which can be taken to 
be roughly 50 to 500 years (i.e., much less than 1000 years). The challenge of this 
research, then, must lie in the identification of relevant and/or dominant centers of 
climatic action (COAs; Table 1 lists acronyms used in this paper) and interactions 
among those COAs (Christoforou and Hameed, 1997; Rodionov et al., 2005; Huth 
et al., 2006; Lim et al., 2006). Huth et al. (2006) found a general tendency for atmo-
spheric circulation modes1 to be more zonal, with COAs covering wider areas and 
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teleconnection among different regions spanning longer distances when solar activ-
ity is strong. The hard task of separating the dynamics of the teleconnection from 
the actual physical mechanisms at COAs must be kept in mind as well.

In this paper, climate refers to the systematic persistence of weather patterns and 
fluctuations that involve: (1) seasonal and annual cycles (i.e., not just time-averaged 
weather statistics); (2) local and regional air pressure systems; (3) topography, land-
scape, and the storage and exchange of heat/energy through atmospheric and oce-
anic circulation; and (4) delayed actions. All these persistent local and regional 
actions and variations take place prior to any global mean radiative forcing or any 
cohesive global mean temperature and precipitation responses. In other words, the 
weather-mediated climate variation and change will be viewed as local and 
regional “inter-seasonal” variations that cover time intervals from months and years 
to tens of millennia. The basic mechanisms involved are not unlike the original 
orbital theory of climate change by Milutin Milankovitch, published in the early 
1940s, which emphasized high-latitude, light-sensitive COAs to explain global-
scale glaciation and deglaciation events and transitions. A key emphasis of this 
insolation–weather–climate framework are the differential responses at different lat-
itudes to insolation changes (Davis and Brewer, 2009) in addition to responses aris-
ing from effects of the four seasons. Thus, it is suggested that persistent insolation 
forcing, when maintained over multidecadal to centennial timescales, accounting 
for both the systematics of the Sun–Earth orbital geometry (Loutre et al., 1992) and 

Table 1. List of Acronyms Used in This Paper
Acronym Definition

TSI
UV
BP
COAs
SST
SLP
EPG
AMO
NPMO
PDO
NAO
ENSO
MOC
THC
ISOW
GIN Seas
ITCZ
SPCZ
GISP2
MIS
GCM
CMIP3
NCAR
IPCC

total solar irradiance
ultraviolet
Before Present
centers of (Climatic) action
sea surface temperature
sea level air pressure
equator-to-pole surface temperature gradient
Atlantic Multidecadal Oscillation
North Pacific Multidecadal Oscillation
Pacific Decadal Oscillation
North Atlantic Oscillation
El Nino–Southern Oscillation
meridional overturning circulation
thermohaline circulation
Iceland–Scotland Overflow Water
Greenland-Icelandic-Norwegian Seas
Intertropical Convergence Zone
South Pacific Convergence Zone
Greenland Ice Sheet Project 2
marine isotope stage
general circulation model
Coupled Model Intercomparison Project Phase 3
National Center for Atmospheric Research
United Nations Intergovernmental Panel on 

Climate Change
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the irradiance variability intrinsic to magnetic variation of the Sun (e.g., Soon, 
2007), is both necessary and sufficient to explain the observed climatic variation on 
multidecadal to centennial timescales.

It can be further added that an all-inclusive theory of climate change should also 
account for the newly proposed theory of independent hemispheric responses to 
solar forcing by Huybers and Denton (2008), whereby a Northern Hemispheric 
response is sensitive to both the local summer insolation intensity and the latitudi-
nal insolation and temperature gradients (Davis and Brewer, 2009), while a South-
ern Hemispheric response is more sensitive to local summer duration.

In the framework of climatic forcings and responses, an understanding of both 
the spectral peaks and the seemingly gap-less continuum of weather–climate oper-
ation will be sought. Huybers and Curry (2006) recently re-initiated such research 
by seeking to connect the annual and Milankovitch cycles to the in-between con-
tinuum temperature variability in terms of the response to deterministic insolation 
forcing. Coincidentally, the multidecadal to centennial timescales discussed in the 
present study are similar to the recognized transitional timescale of Huybers and 
Curry (2006), who proposed that the annual cycle, with assistance from the ocean-
storage delays, served to extend the continuum temperature variability from months 
to decades, while the Milankovitch orbital forcing cycles, with assistance from non-
linear ice-sheet dynamics, drove the continuum temperature variability to higher-
frequency timescales of millennia.

This view of local and regional origins of wide spatial climatic co-variations and 
responses is consistent with the emphasis on relatively high net solar radiation 
reaching the surface at various locations in the Pacific Ocean (e.g., Stanhill and 
Cohen, 2008), or at other warm-pool regions (e.g., Pavlakis et al., 2008), as a driv-
ing force for the fast-coupled air-sea responses that are coherent over broad spatial 
extent (Meehl et al., 2008; van Loon and Meehl, 2008). Finally, an important prac-
tical concept of the “modulated annual cycle,” which accounts for the intrinsic 
nonlinearity of the weather–climate forcings and feedbacks, has been recently 
developed by Wu et al. (2008).

Both d’Orgeville and Peltier (2007) and Zhang and Delworth (2007) showed the 
intimate multiscale coupled interactions and connections among dominant times-
cales and patterns of climate variability involving the Pacific Decadal Oscillation 
(PDO), the related North Pacific Multidecadal Oscillation (NPMO), and the Atlantic 
Multidecadal Oscillation (AMO). Although d’Orgeville and Peltier (2007) did not 
commit to any particular mode as the leading variable, Zhang and Delworth (2007) 
suggested a lagged North Pacific response to the AMO forcing of about 13 years 
that is connected through a chain of dynamical atmospheric teleconnections 
(induced first from AMO-related northward oceanic heat transport) and then ampli-
fied by the positive local air–sea feedback over the central and western North 
Pacific. Zhang and Delworth (2007) further deduced that a regime shift of the North 
Pacific opposite to the 1976–1977 shift might be expected soon, following the 
switch of the AMO to a positive phase around 1995.

Three inter-related causes support a strong control of natural multidecadal-to-
centennial scales of climate variation through a solar–Arctic connection mecha-
nism:
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Cause A: A persistent and systematic variation of the solar TSI and 
related insolation gradient modulates the atmospheric heat transport 
from the tropics to the Arctic, and hence modulates the Arctic tempera-
ture change itself with little or no delay.

Cause B: Thermal perturbations lead to both natural modulation of the 
Arctic sea ice and transport of fresh water through the Bering Strait, and 
from the Arctic through both the Greenland Sea and Denmark Strait and 
the Canadian Arctic Archipelago pathways to deep water formation sites 
spread across the North Atlantic from the Greenland–Icelandic–
Norwegian (GIN) Seas to the east and at the Labrador Sea in the west.

Cause C: Further effects are: (1) thermal, freshwater, and salinity pertur-
bation of the Atlantic MOC-THC; (2) the delayed connection of about 5 
to 20 years with the tropical Atlantic SST and the InterTropical Conver-
gence Zone (ITCZ); and (3) coupling of the affected tropical Atlantic 
processes feeding back to the MOC-THC.

It is important to note that current climate models are not yet able to account for 
all the empirical and proxy evidence and relations noted here (e.g., Zhang and 
Delworth, 2007; Alexander, 2009). Kravtsov and Spannagle (2008), for example, 
make use of the fact that the AMO signals contained in the difference (suggesting 
that climate models have failed to account for the AMO) between the observed SST 
and the multimodel ensemble-mean SST from the CMIP3 (Coupled Model Inter-
comparison Project Phase 3) database, suggesting that AMO is a natural climatic 
signal plausibly related to the oceanic thermohaline circulation (THC). Davis and 
Brewer (2009) pointed out that climate models may overemphasize the seasonal 
response to insolation changes when compared to the differential latitudinal 
response which, in turn, translates into an incorrect representation of the latitudinal 
temperature gradient that is fundamental for capturing climate dynamics (Lindzen, 
1994; Jain et al., 1999). Such a zero-order climate modeling barrier has been 
recently reframed by Rind (2008, p. 855) as “the consequences of not knowing low- 
and high-latitude climate sensitivity.”

Finally, two further assumptions regarding the multidecadal- to centennial-scale 
solar–Arctic connection mechanism. First, the solar–Arctic mechanism borrows 
from recent studies by van Loon and Meehl (2008) and Meehl et al. (2008), which 
focus on coupled surface responses in the Pacific region to the Sun’s decadal peaks, 
giving rise to their hypothesized solar-induced, hydrology-amplified climatic 
responses. Multidecadal to centennial responses could represent the envelope of 
the responses to the solar decadal peaks. However, the mechanism proposed here 
specifies responses in the Arctic and Atlantic basins and postulates equivalent and 
related responses elsewhere. Second, the solar–Arctic mechanism assumes the 
importance of a significant coupled thermal–salinity–cryospheric interaction 
involving the Arctic and many other climatic COAs around the world. Behl and 
Kennett (1996) discussed the connections of anoxic events in the Santa Barbara 
basin with the Dansgaard–Oeschger warm interstadials recorded in the GISP2 core 
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for the past 60 kyr, and Wang et al. (2008) discussed the strong coupling between 
the East Asian Summer Monsoon system and the North Atlantic, especially during 
the cold glacial interval between 75 to 10 kyr BP. However, different regions may 
not be so optimally teleconnected at a much warmer interglacial time when there 
is little Arctic or Northern Hemisphere volume of ice, such as during the MIS stage 
5d  (Zhou et al., 2008).2

This paper offers support for the proposed solar–Arctic mechanism for climate 
variations on multidecadal to centennial timescales. The mechanism can also be 
compared and contrasted with two other promising Sun–climate connection sce-
narios via the decadal solar UV and TSI mechanisms reviewed below.

THE DECADAL SOLAR UV AND TSI MECHANISMS

Kodera (2004) showed a dynamical response of the Indian summer (i.e., July–
August) monsoon that perhaps can be traced to the downward-propagating effects 
of wave-mean flow interactions through the forcing by relatively stronger solar dec-
adal UV radiation in the mesosphere and stratosphere. Kodera and Shibata (2006), 
using a unique and powerful new diagnostic technique, showed how enhanced 
solar heating in the tropical lower stratosphere, while suppressing convective activ-
ity in the equatorial region, enhances convective activity in off-equatorial regions 
and ultimately produces a change in the meridional circulation in the tropical tro-
posphere. The analyses by Claud et al. (2008) show added spatial complexity to this 
dynamical coupling of the Indian summer monsoon system to the 11-year solar 
activity cycle. Such a proposed top-down response to solar decadal UV forcing on 
the Indian summer monsoon offers a remote teleconnection to both the climatic 
variations and trends in the Pacific equatorial cold tongue region and the North 
Atlantic (Selten et al., 2004; Compo and Sardeshmukh, 2008) through what is 
known as the circumglobal wave teleconnection mechanism (e.g., Branstator, 
2002; Watanabe, 2004; Ding and Wang, 2005).

Van Loon and Meehl (2008) and Meehl et al. (2008), through the powerful com-
bination of data analyses and climate modeling experiments, showed how the fast 
and closely coupled surface responses to changing solar surface radiation between 
solar activity maxima and minima could add to the top-down responses through the 
solar UV mechanism proposed by Kodera and colleagues. Specifically, van Loon 
and Meehl (2008) showed that the coupled surface responses in the Pacific to TSI 
variation is such that in solar peak forcing years, the sea level air pressure (SLP) is 
above normal in the Gulf of Alaska and south of the equator, which in turn pro-
duces stronger southeast trade winds across the equatorial Pacific and causes 
increased upwelling and hence cooling SST tendencies broadly across the Pacific 
Ocean. Using two GCMs at NCAR, Meehl et al. (2008) sketched a coupled 
response to peaks of solar decadal TSI forcing that involves increased latent heat 
flux and evaporation, which in turn is carried to the Pacific Intertropical conver-
gence zone (ITCZ) and South Pacific convergence zone (SPCZ) to intensify both 
precipitation regimes. The resulting solar response patterns resemble La Niña-like 
events, but yet are distinct from them, mainly by virtue of their different vertical pro-
file of responses, especially in the stratosphere (van Loon and Meehl, 2008). 
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Modeling experiments conducted by Emile-Geay et al. (2007) suggest that the pow-
erful ENSO coupled air–sea interaction system can serve as a mediator3 of the per-
sistent solar TSI forcing on climate over the Holocene. Their sensitivity calculations, 
with the intrinsic solar TSI variation ranging from 0.05% to 0.2% to 0.5% over the 
Holocene, coupled with the orbital forcing effect, generated El Nino–like SST 
anomalies at times of decreased TSI, which is consistent with the empirical results 
by van Loon and Meehl (2008).

In summary, Kodera and colleagues proposed a top-down forcing-response sce-
nario for a Sun–climate decadal connection that more directly involves the decadal 
solar UV forcing, while van Loon, Meehl and colleagues sketched a bottom-up 
forcing-response scenario for their Sun–climate connection on decadal timescale, 
which invokes decadal solar TSI forcing.

The strength of the bottom-up scenario of coupled surface air-sea responses to a 
persistent solar TSI forcing by van Loon, Meehl, and colleagues is that it offers a bet-
ter explanation for why the multidecadal- to centennial-scale variability can be 
found in such a diverse range of climate-proxy archives from the bottom of the sea 
to high mountain tops (Table A1, Appendix). In contrast, it is harder to conceive of 
a spatially coherent and temporally persistent near-surface response over long dis-
tances, wide geographical conditions, and different topographic settings if the ini-
tial meteorological and climatic impact centers are rooted in the tropical 
mesosphere and stratosphere as a response to the decadal solar UV forcing.

Although the decadal signal for solar irradiance forcing of global-averaged sur-
face temperature has recently been confirmed by Tung and Camp (2008), the actual 
scenario for a physical connection has not been identified. Lim et al. (2006) found 
that solar irradiance modulation of local and regional relative humidity, in combi-
nation with the related climatic distribution of clouds and water vapor over the 
tropical Atlantic, is sufficient to explain the observed tropical Atlantic decadal 
oscillation.

RESULTS AND DISCUSSION

Empirical Evidence and Mechanistic Explanation for Interrelated Causes 
and Responses A, B, and C

Soon (2005) showed evidence of natural climate variations on multidecadal to 
centennial timescales through a solar–Arctic connection mechanism. Figure A1 
(Appendix) updates the previously published solar TSI–Arctic surface air tempera-
ture correlation in Soon (2005).4 The results presented by Kauker et al. (2008) 
strongly support the multidecadal variations of the Arctic surface temperature from 
the Arctic Atlantic, to the Arctic Pacific and then to the Arctic Greenland/Iceland 
sectors (the chart is available upon request). Figure 1 shows that the solar TSI–
Arctic-wide temperature correlation can also be found on a much smaller regional 
scale, as demonstrated by similar TSI–temperature correlations for two coastal sta-
tions of southern Greenland: Godthab Nuuk in the west and Ammassalik to the 
east. It is important to note that available oceanographic data at Fyla Bank off 
Godthab Nuuk show that the early 20th century surface thermometer warming was 
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detected around 1920 at the surface ocean (Holland et al., 2008). Such a consistent 
pattern of correlations on different spatial domains and scales is an important ingre-
dient for a physical solar–Arctic connection.

Another important update and extension is the new result by Jiang et al. (2005) 
showing the consistent role for solar irradiance forcing in triggering and 

Fig. 1. The annual mean estimates of total solar irradiance (solid line) compared with the surface 
temperature records from two coastal Greenland stations: Godthab Nuuk (dotted curve; top panel) and 
Ammassalik (dotted curve; bottom panel) from about 1881 to 2007 (from “after homogeneity adjust-
ment” records in http://data.giss.nasa.gov/gistemp/station_data/). This result adds regional details to the 
TSI-Arctic-wide surface temperature correlation identified in Soon (2005).



ARCTIC-MEDIATED CLIMATE VARIATION 151
maintaining the multidecadal to centennial variation of the SSTs around the North 
Icelandic Shelf over the last 2000 years. Jiang et al. (2005) further noted the rela-
tively stronger temperature responses during winters than summers, which is con-
sistent with the result outlined in Soon (2005). High-resolution proxy annual-mean 
and wintertime SSTs from a coral record at Bermuda (Goodkin et al., 2008a, 2008b) 
showed enhanced multidecadal-scale variability during the late 20th century when 
compared to variability near the end of the Little Ice Age. These results, together 
with the evidence on the sensitivity of Arctic Ocean ice cover and thickness to 
atmospheric poleward energy flux by Soderkvist and Bjork (2004) in their coupled 
ocean–ice–atmosphere column model, support the proposed solar–Arctic connec-
tion Cause A. The enhanced poleward atmospheric transport scenario is supported 
by the consistent increases in wind stress trends over the Arctic basin shown for 
annual mean, winter, and summer values for 1948-2006 (Hakkinen et al., 2008). 
Indirect evidence for variable poleward heat transport for earlier periods (i.e., 
before 1950) can be found in the multidecadal variation of the equator-to-pole 
(EPG) surface temperature gradient as well as the multidecadal-scale modulation of 
the phase of the EPG annual cycles (Jain et al., 1999).

Graversen et al. (2008), in their close examination of the vertical pattern of 
recent Arctic warming, concluded that much of the observed Arctic warming aloft 
is related to changes in poleward atmospheric heat and moisture transports rather 
than from near-surface snow and ice albedo feedbacks, as has been modeled and 
suggested in climate model experiments with increased atmospheric CO2. This 
result is consistent with the theoretical and modeling studies by Alexeev et al. 
(2005), Winton (2006), and Cai and Lu (2007), where poleward heat transports, 
plausibly linked to differential latitudinal response to insolation changes, are shown 
and argued to be more important in explaining polar warming than direct surface 
snow and ice albedo feedbacks. Smedsrud et al. (2008) showed that indeed the 
poleward atmospheric energy flux to the Arctic has increased overall for the last 50 
years, from 1956 to 2006, which is consistent with solar–Arctic connection Cause 
A, but they emphasized that the tendency for a net increase over more recent 
decades has slowed. L’Heureux et al. (2008), Overland et al. (2008), Serreze et al. 
(2008), Zhang et al. (2008), and Lindsay et al. (2009) all provided updated data 
series up to 2007 and discussion of the key role played by the recent shift in spatial 
patterns of atmospheric forcing and the strengthened poleward atmospheric heat 
transport directly or indirectly reaching the central Arctic. Polyakov et al. (2005) 
showed evidence for the enhanced North Atlantic warm water intrusion into the 
Arctic Ocean and Barents Sea, while Shimada et al. (2006) documented the influx 
of warm Pacific summer waters into the Arctic Ocean via the Bering Strait in order 
to account for the observed rapid changes in the Arctic climate system. Serreze et 
al. (2008) argued that the near surface–based Arctic amplification signal through 
snow and ice albedo feedbacks may soon be emerging if the Arctic Sea continues 
to lose its ice, and emphasized that their results are not in conflict with those of 
Graversen et al. (2008).

Finally, direct hydrographic data from the northeast North Atlantic and Nordic 
Seas in Holliday et al. (2008) showed not only the reversal of the 1960 to 1990s 
freshening trend but also seem to offer practical short-term forecasts for temperature 
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and salinity around the Fram Strait region for Atlantic inflow conditions to the Arctic 
Ocean. A similar forecast based on short-term hydrographic tendencies for 
Labrador Sea regions has also been proffered by Yashayaev (2007) and Yashayaev et 
al. (2007), but Yashayaev and Loder (2009) recently reported a sudden atmospheric 
cooling and enhanced production of Labrador Sea water in the fall–winter 2007–
2008 season, which disrupted the steady warming around the region since 1994. 
Similarly, Vage et al. (2009) documented a surprising return of winter deep convec-
tion to the subpolar gyre in both the Labrador and Irminger Seas, apparently with-
out going through a phase of preconditioning. This most up-to-date situation in the 
Labrador Sea should points to the need for caution when attempting to forecast any 
near- or long-term changes in the northern North Atlantic and Arctic.5

Empirical evidence supporting the solar–Arctic connection Cause B may be 
found in the important synthesis of observational data in Polyakov et al. (2008), 
demonstrating the multidecadal variability of climate variables in the Arctic and 
their interconnections, which include the Arctic surface air temperature, upper 
150-m Arctic Ocean freshwater content, fast ice thickness, intermediate Atlantic 
water core temperature of the Arctic Ocean, and upper 300 m North Atlantic water 
salinity. Here, one might interpret that a warmer Arctic (detected in both air and 
ocean-water temperatures) led to above-normal melting of Arctic sea ice and excess 
flushing of Arctic freshwater to the Nordic seas and the subpolar North Atlantic 
basins. The observational data of Polyakov et al. (2008) are consistent especially 
with the newly reconstructed freshwater content data series over the northern 
Atlantic by Pardaens et al. (2008).

Dima and Lohmann (2007) independently sketched a dynamically consistent 
framework for the AMO, and were able to fill in some important feedbacks and 
delay factors. They show the hemispheric wavenumber-1 sea level air pressure pat-
tern to be related to the Fram Strait sea ice export, which, in turn, affects the THC/
MOC oceanic circulation and hence the sea surface conditions in both the North 
Atlantic and North Pacific. Dima and Lohmann (2007) spelled out the role of the 
THC adjustment to freshwater forcing, the Atlantic SST response to MOC, and the 
oceanic adjustment in the North Pacific as key delays in the chain, while the ocean-
atmosphere-sea ice interactions in the Atlantic, Pacific, and Arctic oceans served as 
the crucial negative feedbacks to sustain the AMO oscillation on timescales of 
about 70 years. Jungclaus et al. (2005) also proposed a scenario of Arctic–North 
Atlantic interactions with the multidecadal variability of Atlantic MOC/THC based 
on the outputs of their 500-year GCM control, unforced, run. The important exten-
sion of climate modeling experiments by Grosfeld et al. (2008) shows that, in addi-
tion to attributing the origin of the 60–70 year scale oscillation to the Atlantic 
Ocean, there is possibly a separate and distinct scale of about 80–100 years that is 
intrinsic to the Pacific Ocean.

The paper’s argument for a multidecadal- to centennial-scale variability adopts 
and accepts most of the detailed physical processes outlined in Dima and Lohmann 
(2007), but the solar–Arctic connection picture given here also includes a more 
direct emphasis on climatic modulation by the Arctic (i.e., the call for direct 
involvement of Arctic-wide surface temperature and sea ice and fresh water in the 
Arctic basin, with emphasis on pathways for freshwater exchanges and transports, 
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rather than merely sea ice export from the Fram Strait); and a wider range of spatial-
temporal scales beyond the more limited 70- to 80-year variability set in the Dima 
and Lohmann (2007) framework, because the memory and turning points for the 
multiscale oscillation in this solar–Arctic connection picture appear to be decided 
more by the external TSI forcing. For this reason, the phrase “multidecadal to cen-
tennial timescales”6 is used throughout this paper.

Adding to these processes is the current emphasis on the effects of influx of low-
salinity Pacific water through the Bering Strait (Aagaard et al., 2006; Shimada et al., 
2006; Keigwin and Cook, 2007) in perturbing the ice and freshwater environment 
over the Arctic Ocean. These effects are non-negligible and may at times have 
played a more prominent role than at present (e.g., Wadley and Bigg, 2002; Yang, 
2005, 2006; Dickson et al., 2007). Finally, Peterson et al. (2006) and Serreze et al. 
(2006) confirmed the roles of net precipitation, river discharge, and sea ice attrition 
as important freshwater sources, compared to the relatively minor contributions of 
glacial melt. The modeling study by Wu and Wood (2008) suggests that the recent 
freshening trend over the subpolar North Atlantic can be explained by a redistribu-
tion of freshwater within the Arctic and subpolar North Atlantic and that the redis-
tribution was probably carried out by a perturbed ocean circulation in the subpolar 
seas and triggered by deep convection in the Labrador Sea.

Both the Arctic sea ice extent data derived by Zakharov (in Johannessen et al., 
2004) and the Icelandic sea ice extent (Zhang and Vallis, 2006) provide evidence 
in support of the inverse relation between Arctic temperature and sea ice extent for 
about the past 100 years, as proposed in Cause B of this solar–Arctic connection. 
Quantitative reconstruction by Kauker et al. (2008) also support a significant ice 
loss over the Arctic basin from 1916 to 1955, although they suggested that the ice 
loss of this period was somewhat less extensive than the recent loss from mid-1960s 
to mid-1990s.

In the context of the proposed solar Arctic-mediated climate variation mecha-
nism, it is assumed that the sea ice export is not exactly the same as freshwater 
export from the Arctic and that more sea ice export from the Arctic basin may be 
more related to colder conditions within the Arctic, not unlike the notable ice-
rafting events and episodes seen throughout the Quaternary (e.g., Bond et al., 1997, 
1999; Vidal et al., 1997; Darby and Zimmerman, 2008; Hill et al., 2008; or 
counter-views and interpretations by Andrews et al., 2006), or in the summer of 
1695 recently re-interpreted by Gil et al. (2006), as well as the great salinity anom-
aly events of the 1970s, 1980s, and 1990s, modeled and discussed in Zhang and 
Vallis (2006). But importantly, it is recognized that extra exports of sea ice, episodic 
or otherwise, or a more continuous nature of the freshening and flushing of water 
from the Arctic basin to the northern North Atlantic basins (e.g., Condron et al. 
2009) would serve as key negative feedbacks for the MOC/THC oscillation. 
Dickson et al. (2007) highlighted the potentially greater importance of combined 
ice and freshwater outflows from the Arctic Ocean basin through the Canadian Arc-
tic Archipelago/Nares Strait/Baffin Bay/Davis Strait pathways under a warm Arctic 
and low-ice-volume climatic regime.7 Detailed computer modeling (Proshutinsky 
et al., 2002; Moon and Johnson, 2005; Dukhovskoy et al., 2006; Condron et al., 
2009) shows how the oscillations between the anticyclonic and cyclonic 
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circulation regimes, involving contraction and expansion of the Beaufort Gyre, are 
affecting how Arctic sea ice and freshwater are stored and released to the northern 
North Atlantic Ocean.

Figure 2 records plausible evidence for a connection between TSI solar forcing 
in producing the thermal-freshwater-salinity–related effects on deep-ocean flow of 
the northern North Atlantic for the full 1770–2004 A.D. interval. It uses new mean 
grain-size data from Boessenkool et al. (2007) that represents the near-bottom flow 
speed of Iceland-Scotland Overflow Water (ISOW). It should be further noted that 
Bossenkool et al. (2007) suggest that the vigor of ISOW is controlled by the trans-
port and characteristics of the Labrador Sea water farther to the west (Jungclaus et 
al., 2005). The correlation between TSI and the three-point smoothed grain-size 
index shown in Figure 2 has a correlation coefficient of r = -0.45, which even with 
the reduced degrees of statistical freedom would still constitute a significant corre-
lation. In comparison, Boessenkool et al. (2007) showed a correlation between the 
grain size with a seven-year smoothed NAO index for the selected (rather than the 
full data shown in Fig. 2) interval of 1885–2004 with an r value of only -0.42 (n = 
55). Although it is not the intent of this paper to explain the correlation, but merely 
to demonstrate plausibility, the apparent correlation in Figure 2 suggests a slower 
ISOW flow speed with increasing TSI. Finally, the solar–Arctic connection in Cause 

Fig. 2. The annual mean estimates of total solar irradiance (solid line) correlated with the three-point 
smoothed mean grain-size index (dotted line) of Boessenkool et al. (2007) from about 1770 to 2004. 
The grain-size index is a proxy for the flow speed of the near-bottom Iceland–Scotland Overflow Water 
(ISOW) which is, in turn, related to the deep water formation in the Labrador Sea to the west. Smaller 
mean grain size suggests slower ISOW, and larger grain size implies faster ISOW.
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B outlined here may also find support from the specific documentation of the 75- to 
80-year period from the Holocene history of drift ice within the northern North 
Atlantic region by Moros et al. (2006).

In the search of a physical mechanism and understanding of a Sun–climate con-
nection, one need not be automatically hunting for maximum possible statistical 
correlations between any two variables (e.g., Soon et al., 2000). For example, 
Zhang et al. (2007) showed how an equally good fit of the observed detrended 
Northern Hemispheric temperature time series can be achieved with relatively high 
correlations, and yet each of the good fits was obtained under dramatically different 
heat flux redistribution and transport scenarios. Such a reality suggests that high 
correlations between variables do not imply correct identification of a physical 
mechanism given that multiple physical processes could well be responsible for 
establishing a quasi-mean state or any deviation from the mean.

Figures 3 and 4 show the empirical support for the proposed solar–Arctic connec-
tion Cause C. In Figure 3, the maximum MOC index (i.e., centered around 30–35°N 

Fig. 3. The detrended total solar irradiance anomaly series shifted forward by 10 years (thick solid 
line; see also the same shift in Fig. 4) to show correlation with the maximum of the zonal mean of the 
Atlantic Meridional Overturning Circulation at 30°N deduced by Knight et al. (2005) (dotted grey lines 
with the upper and lower bounds as the “uncertainty” limits). Grey diamond symbols connected with 
thin solid lines are the eight-member forecasts for the 35 years offered by Knight et al. (2005). A 
detrended solar TSI series was used in order to compare more fairly with the normalized measures of SST 
and THC anomalies used in Knight et al. (2005). See Kravtsov and Spannagle (2008) for a discussion of 
the details of the detrending of datasets for the construction of AMO-related SST changes, and Vellinga 
and Wu (2004) for a discussion of why the maximum MOC index is a useful proxy for the Atlantic THC 
for the study of AMO, but the index is clearly not useful for assessing interannual THC variability.
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roughly 1000 to 2000 m below surface) as deduced from the SST distribution by 
Knight et al. (2005) is plotted with the TSI series shifted forward by 10 years, corre-
sponding to the estimated delayed response in lower latitudes. Figure 4 shows a sim-
ilar comparison with tropical Atlantic SST at around 10–20°N. The chosen delay 
time of 10 years is only a rough estimate for the thermal-cryospheric-salinity and 
mechanical wind stress effects occurring within the Arctic and northern North 

Fig. 4. The annual-mean estimates of total solar irradiance (TSI) versus the tropical Atlantic SST at 
10-20°N from 1870 to 2004 (top panel), and with the solar TSI advanced forward by 10 years (bottom 
panel) in order to illustrate the delayed connection of the tropical Atlantic SST to solar TSI forcing effects 
initiated first within the Arctic and North Atlantic basins.
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Atlantic basins to propagate southward. But it is clear from both empirical evidence 
(Curry et al., 1998; Molinari et al., 1998) and careful ocean modeling (Yang, 1999) 
that a physical delay of some 5 to 20 years is reasonable. Yang (1999), for example, 
pointed out a five-year delay for decadal variations in the Labrador Sea and the trop-
ical Atlantic dipole index set by coastally trapped waves, rather than the probably 
longer advection time through the Deep Western Boundary Current (Goodman, 
2001). In the AMO framework of Dima and Lohmann (2007), a delay of 10–15 years 
was deduced for the time it will take for the freshwater forcing on both the North East 
Atlantic deep water and Labrador Sea deep water convection sites to affect the MOC 
circulation. Jungclaus et al. (2005) deduced an optimal lead time of 12 years for 
changes in the convection intensity in the Labrador Sea to affect the MOC/THC. 
Finally, Latif et al. (2006) offered evidence and argument for the atmospheric NAO 
index to lead the Atlantic Dipole Index8 by 5 to 20 years, where this index is pro-
posed as a good proxy for THC/MOC circulation. Based on inland temperature 
proxy data, the finding by Eichler et al. (2009) of 10- to 30-year delays between the 
solar forcing proxy and Siberian Altai Mountain region temperature throughout the 
1250–2000 AD period is consistent with the proposed solar–Arctic and Atlantic 
MOC-mediated mechanism.

Additional Mechanistic Explanation for Interrelated Causes and 
Responses A, B, and C

The wind-driven subtropical and subpolar gyre circulations both across the 
Pacific and Atlantic Oceans may be also important for the plausible solar-induced 
feedbacks and delays to help sustain the multidecadal to centennial variations (e.g., 
Wu et al., 2003; Zhang and Vallis, 2006; Hasegawa et al., 2007; Qiu et al., 2007; 
DiLorenzo et al., 2008; Guan and Huang, 2008; Alexander, 2009; Saenko, 2009). 
The modeling study by Wu et al. (2003), for example, shows that in the North 
Pacific, the multidecadal memory may be rooted in the slow adjustment of the 
subtropical/subpolar gyre in response to wind stress imposed in the central North 
Pacific and the slow growth/decay of the SST anomalies that propagate eastward in 
the Kuroshio Extension region. Saenko (2009) showed the important climatic 
impacts of wind stress, especially those around regions poleward of 30°, with oce-
anic heat transport accounting for only a small fraction of total poleward energy 
transport, and where, if one were to remove that wind stress forcing, surface tem-
peratures at high-latitude regions could drop by more than 10°C with the mean 
position of the simulated sea ice edge moving equatorward and reaching latitude 
40°N. The important study by Guan and Huang (2008), which emphasizes mechan-
ical energy in order to sustain the THC, shows how adding the wind-driven gyre not 
only leads to a more complete modeling of the physical processes related to THC, 
but also changes the threshold value of the THC dynamical bifurcation property 
greatly. Therefore, both fresh water and wind forcing will be key elements for the 
current solar– Arctic connection picture.

It may not be straightforward to explain the seemingly counterintuitive relation-
ship of stronger Atlantic maximum MOC with increased TSI forcing indicated in 
Figure 3. But the plausibility of a decreased equator-to-pole surface density (i.e., 
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from an enhanced thermal and fresh water perturbation and modulation of the con-
vective sinking regions for deep water formation spread across the North Atlantic 
with increased TSI forcing) leading to stronger, rather than weaker, thermohaline 
circulation was studied by Nilsson and Walin (2001) and Nilsson et al. (2003). The 
theory of Nilsson, Walin and colleagues viewed the slow upwelling of dense water 
overall in the low latitudes and the Southern Ocean (see also Visbeck, 2007; 
Toggweiler and Russell, 2008), rather than high-latitude production and sinking of 
dense water as the rate-limiting branch of THC.9 The Nilsson et al. theory showed, 
with a reasonable model of interval wave mixing, that the vertical diffusivity would 
increase with decreasing surface equator-to-pole density contrast, and that would 
deepen the thermocline and, in turn, lead to a stronger THC.

The proposed Cause C mechanism must necessarily include coupling with the 
multidecadal- to centennial-scale variations of the Atlantic Intertropical Conver-
gence Zone, as noted in several proxy archives (Nyberg et al., 2001; Poore et al., 
2004; Peterson and Haug, 2006; Black et al., 2007) and in climate modeling exper-
iments (Vellinga and Wu, 2004; Chiang and Bitz, 2005; Zhang and Delworth, 
2005). In general, these studies have highlighted a robust shift of the ITCZ south-
ward during North Atlantic cooling and slower MOC/THC and a northward ITCZ 
shift during the opposite phase of stronger MOC/THC and warmer North Atlantic-
Arctic conditions. The most important aspect of these studies that focused on the 
tropical Atlantic is the related feedbacks to the MOC/THC itself. Vellinga and Wu 
(2004) placed a greater emphasis on the role of low-latitude fresh water through the 
ITCZ variability on a centennial timescale for feeding back to the THC circulation. 
This emphasis may also be ultimately related to the THC variability theory of 
Nilsson and Walin (2001) and Nilsson et al. (2003). There is little doubt that both 
the ITCZ and inter-hemispheric SST gradient proposed by Vellinga and Wu (2004) 
are dominant weather–climate processes operating on seasonal and interannual 
timescales that can feed back and couple to the solar TSI–induced Arctic–high lati-
tude processes emphasized in this paper. But it is harder to find justification in avail-
able data that “sustained salinity anomalies slowly propagate toward the subpolar 
North Atlantic at a lag of 5–6 decades” to maintain the centennial-scale variability 
of Atlantic THC, as seen in model outputs by Vellinga and Wu (2004, p. 4498).

More Related Consequences and Impacts

Several important and related consequences and connections of multidecadal- 
to centennial-scale variations of the Atlantic MOC/THC have recently been pointed 
out by Dong et al. (2006), Goswami et al. (2006), Knight et al. (2006), Lu et al. 
(2006), Li and Bates (2007), Sutton and Hodson (2007), Timmermann et al. (2007), 
Chang et al. (2008), Denton and Broecker (2008), Feng and Hu (2008), Li et al. 
(2008), Ting et al. (2008), and Wang et al. (2009).

In Figure 11 of their study of the effects of a weakening Atlantic MOC/THC on 
the coupled ENSO system, Timmermann et al. (2007) made the remarkable obser-
vation that, during the positive phase of AMO, the annual cycles of the Nino-3 SST 
are intensified, while the ENSO-scale (i.e., 2 to 8 years) SST variability is relatively 
more muted, and the inverse occurs for the opposite phase of AMO. Such a 
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nonlinear multidecadal modulation of the annual-cycle and ENSO signals, which 
was clearly noted by White and Liu (2008b), may ultimately be consistent with the 
new insight they offered concerning the non-linear alignment of El Niño/La Niña 
episodes with the combined signals from the 11-year solar cycle-generated 3rd (3.6-
year) and 5th (2.2-year) harmonics. On millennial timescales, proxy data (Stott et al., 
2002) from the western Pacific warm pool region suggest that El Niño conditions 
correlate with cooler-stadial conditions around Greenland and the North Atlantic, 
while La Niña conditions tend to correlate with warmer interstadials.

Denton and Broecker (2008) demonstrated the non-obvious connection 
between AMO and the retreating and advancing activity of 38 selected glaciers in 
the Swiss Alps with little or only slight delays in the glacier response. Such a tight 
coupling between glacier activity in the Swiss Alps and AMO was suggested to arise 
from the effects of AMO on European summertime temperatures. Chang et al. 
(2008) showed the active role played by MOC/THC in explaining abrupt climate 
events in the tropical Atlantic, including the rapid reduction of summer monsoonal 
wind and rainfall over West Africa. Knight et al. (2006) and Ting et al. (2008) 
showed the wide-ranging climatic impacts of the AMO, including rainfall over the 
Sahel and sea surface temperature over the main development region of Atlantic 
hurricanes (Fig. 4).

Goswami et al. (2006), Lu et al. (2006), Sutton and Hodson (2007), Feng and Hu 
(2008), and Li et al. (2008) found multidecadal modulation of Indian summer mon-
soon rainfall through empirical data analyses and modeling experiments. Although 
the AMO–Indian monsoon rainfall relationship is not fully robust, the general ten-
dency is such that a positive AMO/MOC/THC phase, via both persistent tropo-
spheric and near-surface response pathways, leads to more summer rainfall with 
modulated delay responses until the months of September and October. Li and 
Bates (2007) showed atmospheric GCM results that yielded relatively uniform, 
warmer winters in East China but a dipolar north–south positive–negative pattern of 
precipitation responses during the positive AMO phase and inversely for the nega-
tive AMO phase. Earlier, Tan et al. (2004) showed an interesting correlation 
between the warm-season temperature proxy for Beijing and the North Atlantic 
Drift ice index of Bond et al. (2001) covering the last 2650 years, but they did not 
offered a working mechanism. Wang et al. (2009) emphasized the influences of 
AMO on Asian monsoonal climate in all four seasons, producing weakened winter 
monsoons but enhanced summer monsoons related to AMO-modulated tropo-
spheric heating anomalies.

Finally, the works by Braun et al. (2005), Weng (2005), and Dima and Lohmann 
(2009) support the present proposal by showing how the various key intrinsic times-
cales and physics related to this solar–Arctic connection can interact and connect 
dynamically from annual cycles to the noted millennial-scale oscillation of about 
1470 years of the Dansgaard–Oeschger events noted during glacial intervals.10

Weng (2005), using both ocean temperature data and a toy model, illustrated how 
in a nonlinear weather–climate regime that even a “small” change in TSI forcing 
will effectively interact with and couple to the seasonal forcing to generate and sus-
tain climate responses and variations of multidecadal to centennial timescales.11

Braun et al. (2005), using the Potsdam Institute’s intermediate complexity coupled 
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climate system model, showed how the 1470-year glacial climate cycle could be 
robustly and realistically generated solely from the periodic forcing of freshwater 
input into the North Atlantic Ocean in cycles of 87 and 210 years, which were 
identified by the authors as the solar Gleissberg and deVries/Suess activity cycles, 
respectively.12

Dima and Lohmann (2009) suggest that, instead of being the synchronization of 
the two basic solar cycles or any amplification of a weak direct 1500-year forcing 
of unknown origin by THC, the origin of the 1500-year cycle is best viewed as the 
rectification of an external solar forcing through dynamical connection to a thresh-
old internal response of the THC. Their work emphasizes that observed millennial 
variability in paleo-proxy records should be considered as a derived dynamical 
mode of the climate system without physical processes on a fixed millennia times-
cale, regardless of whether this timescale is rooted in the Sun or in Earth climate 
system. This possibility certainly adds another layer of complexity in the study of the 
Sun–climate connection.

CONCLUSION

This paper proposes three interrelated causes for natural climate variations on 
multidecadal to centennial timescales through a solar–Arctic connection mecha-
nism. The first, Cause A, is that a persistent and systematic variation of the solar TSI 
and related insolation gradient modulates the atmospheric heat transport from the 
tropics to the Arctic, and hence modulates the Arctic temperature change itself with 
little or no delays.

The second, Cause B, is that thermal perturbations lead to both natural modula-
tion of the Arctic sea ice and to transport of fresh water through the Bering Straits 
and from the Arctic through both the Greenland Sea and Denmark Strait and the 
Canadian Arctic Archipelago pathways to deep water formation sites spread across 
the North Atlantic from the Greenland–Icelandic–Norwegian (GIN) Seas to the east 
and at the Labrador Sea to the west. The third, Cause C, is that further effects are: 
(1) thermal, freshwater, and salinity perturbation of the Atlantic MOC-THC; (2) the 
delayed connection of about 5 to 20 years with the tropical Atlantic SST and the 
InterTropical Convergence Zone (ITCZ); and (3) coupling of the affected tropical 
Atlantic processes feeding back to the MOC-THC. This three-part solar–Arctic cli-
mate variation mechanism emphasizes plausible physical arguments rather than 
statistical correlations.

The proposed solar–Arctic connection chains from Causes A–C have good 
empirical support, and this mechanism appears to explain the operation of coupled 
air–ocean–ice responses over broad areas connecting the Arctic and North Atlantic 
to other locations on multidecadal to centennial timescales. This proposal offers the 
opportunity for a rejectable scientific hypothesis of a physical Sun–climate connec-
tion. The new synthesis should be viewed as a step forward in the long quest to 
understand how the full weather–climate continuum varies on multidecadal to cen-
tennial timescales by highlighting the role of solar irradiance forcing upon the 
Arctic region, in not only sustaining and amplifying the natural climatic oscillation 
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and variation, but also in the selectivity or specification of the broadband nature of 
the spatial and temporal scales of the climatic responses involved.
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NOTES

1Huth et al. (2006) cautioned that it may not be appropriate to use spatially fixed indices, such as 
the North Atlantic Oscillation (NAO; see however the study of Portis et al., 2001 for a new NAO index 
with spatially evolving domains) to study plausible solar activity responses since the majority of COAs 
change their locations depending on the solar cycle phases. In addition, Rodionov et al. (2005), in their 
careful classification of five types of atmospheric circulation for anomalously warm months and another 
five types for anomalously cold months in the Bering Sea, found that changes in the position of the 
Aleutian Low are more important than changes in its central pressure.

2The high alpine stalagmite δ18O record of Holzkamper et al. (2004) covering the Eemian, however, 
still shows evidence for spectral peaks at 197, 109, and 21 years that can be associated with the Suess/
deVries, Gleissberg, and Hale cycles of solar activity variations.

3White and Liu (2008b) recently reported how the 11-year solar radiative forcing drove not only the 
quasi-decadal signal in the tropical Pacific sea surface temperature (White and Liu, 2008a) but also was 
responsible for the 3.6-year ENSO signal and the 2.2-year quasi-biennial-oscillation signal. The 3.6-
year and 2.2-year SST signals are interpreted and modeled as the third and fifth harmonics of the first-
harmonic 11-year period quasi-decadal response to the 11-year solar radiative forcing. Usoskin et al. 
(2007) provided additional discussion and consideration of intrinsic solar activity variations on the 
interannual timescale, including the persistence of the third harmonics of the 11-year solar cycles.

4One should note that the absolute level of TSI since 1979 has been measured by satellite-borne 
cavity radiometers with values ranging from 1360 to 1375 W/m2, and the resolution of this indetermi-
nacy requires new measurements with radiometers with more precisely determined pinhole area versus 
surface area of the cavity radiometers. The absolute value of TSI used for this paper has been arbitrarily 
tuned so that the mean value for the 1979–present interval is roughly 1366.3 W/m2 (N. Scafetta, 2007, 
private comm.; Scafetta and Willson, 2009).

To further comment on the estimates of TSI forcing, the IPCC (2007) AR4 WG 1 report’s Section 2.7 
(p. 188) has recently claimed: 

The estimates of long-term solar irradiance changes used in the TAR (e.g., Hoyt and 
Schatten, 1993; Lean et al., 1995) have been revised downwards, based on new studies 
indicating that bright solar faculae likely contributed a smaller irradiance increase since 
the Maunder Minimum than was originally suggested by the range of brightness in Sun-
like stars (Hall and Lockwood, 2004; M. [sic] Wang et al., 2005).

Figure 2.17 on p. 190 of the IPCC (2007) WG 1 report provides a graphical summary that contrasts 
the previous estimate by Lean (2000) to the new estimate by Y.-M. Wang et al. (2005; including Lean as 
co-author). The comparison shows that the older estimate was 3.8 times larger for the deduced increase 
of radiative forcing from the Maunder Minimum to contemporary solar activity minima.

But is the quoted claim correct? Several facts clearly suggest that those statements from IPCC AR4 
are neither accurate nor authoritative. First, it must be pointed out that, although Y.-M. Wang et al. 
(2005) may have given the impression that their paper actually gives a constraint on how large or small 
the brightness of the Sun should be, it does not. Their paper was based primarily on the so-called mag-
netic flux transport model that was never meant to model any irradiance change or any assessment of 
the energy budget of the whole Sun. The flux transport model does not even contain any radiative trans-
fer calculation.

A similar limitation can be noted in the IPCC AR4’s reference to Hall and Lockwood (2004), which 
was primarily a paper on solar and stellar magnetic activity rather than on how magnetism and light 
outputs of the Sun and sunlike stars are linked. Furthermore, it is somewhat puzzling that the following 
related papers were not cited or discussed: (1) Radick et al. (1998); (2) Giampapa et al. (2006); (3) Hall, 
Henry et al. (2007); 4) Hall, Lockwood, et al. (2007); and (5) Lockwood et al. (2007). The IPCC AR4 
WG I Chapter 2 authors also ignored the key result published in Zhang et al. (1994) [previously cited in 
IPCC (2001) Third Assessment Report] that is clearly not outdated or superceded. Therefore, the IPCC 
AR4 quote highlighted here is not a defensible summary of the high-quality scientific research that has 
been done on TSI forcing.
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5See the discussion in Vage et al. (2009) on the multiple factors contributing to the return of deep 
convection at the Labrador and Irminger seas during the winter season of 2007–2008 despite a fairly 
low or neutral NAO index and an increased flux of Arctic sea ice to the North Atlantic subpolar basin.

6Based on a study of the unforced internal variability of the Kiel Climate Model, Park and Latif 
(2008) recently proposed the separation of their “multidecadal-scale” (i.e., with peak spectral powers at 
roughly 50–100 years) and “multicentennial-scale” (i.e., with peak spectral powers at roughly 300–400 
years) variability of the Atlantic MOC, in that the former can be shown to originate in the North Atlantic 
whereas the latter is driven in the Southern Ocean. The current state of ocean proxy-observation and 
modeling does not meaningfully warrant such a distinction at this time.

7See also discussion and estimates in Wadley and Bigg (2002), Jones et al. (2003), Cuny et al. 
(2005), Prinsenberg and Hamilton (2005), Kwok (2006, 2007), Munchow et al. (2006), Serreze et al. 
(2006), Zweng and Munchow (2006), Greene et al. (2008), and Condron et al. (2009).

8This dipole index was defined as the difference of the annual-mean SSTs from the 40–60°N, 60–
10°W box and 40–60°S, 50°W–0° box in Latif et al. (2006), and is slightly different from a previous def-
inition of the difference between the 40–60°N, 50–10°W box and 10–40°S, 50°W–10° box by Latif et 
al. (2004).

9See Guan and Huang (2008) for additional clarification on the key role played by wind stress and 
tidal dissipation as the external mechanical sources needed to support the MOC/THC, and see Adkins 
et al. (2005) for a suggestion of the thermobaric effects and geothermal heating in explaining the rapid 
change and instability observed for glacial deep ocean.

10See Bond et al. (1997) and Bond et al. (1999) for the discussion of the muted Dansgaard/
Oeschger–like mode during the Holocene. See also the distinction and clarification for rapid and abrupt 
oscillations during glacial times and the Holocene in Alley (2007) and Denton and Broecker (2008).

11Weng (2005) was referring to the “80–90 Gleissberg cycle” timescale, but I agree with her that it is 
probably difficult or even pointless to be too specific because the objective of our common task is to 
understand not only any particular spectral features/characteristics, but also the broader scales of the 
weather–climate continuum.

12See Braun et al. (2008) for additional supports and arguments for their original paper.
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APPENDIX 1

Fig. A1. Updated annual mean Arctic surface air temperature anomaly (dotted line) time series (from 
NASA GISS) correlated with the estimated total solar irradiance (solid line) of Hoyt and Schatten (1993) 
from 1880–2007. It should be noted that an updated time series from Polyakov et al. (2003) is unavail-
able at this time (Polyakov, private comm., July 24, 2008), so the NASA GISS Arctic (64–90°N) temper-
ature series (http://data.giss.nasa.gov/gistemp/tabledata/ZonAnn.Ts+dSST.txt) is adopted for 
convenience. Although not strongly affecting the current study on multidecadal to centennial variabil-
ity, there are apparent discrepancies between the relative highs of the Arctic temperature values for 
1937 and 1938 in the current NASA GISS database compared to previously published values (marked 
by the open diamond symbols) from Hansen and Lebedeff (1987). In contrast, the value for the cool year 
at 1887 remained similar (closed diamond symbol) from the old and new NASA GISS records. It is not 
obvious how the urban heat island effect can play a dominant role in either the Arctic surface air tem-
perature record of Polyakov et al. (2003) or NASA GISS. The vertical dashed line around the year 2000 
marks the end year for the previously published result in Soon (2005).
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APPENDIX 2

Table A1. References on Sun–Climate Oscillation Scales Detected in
Multiproxy Archives with a Focus on the 80-Year and 200-Year

(and the necessary 1500-year scale) Solar Variability

Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

(0) Solar proxies and theories

Pipin, 1999 Sun Dynamo theory Solar 
magnetism

General Gleissberg and 
longer scales

Wagner et al., 
2001

Greenland 
GRIP

10Be ice-core 10Be produc-
tion rate

20-50 kyr B.P. 205-yr

Peristykh and 
Damon, 2003

World Δ 14C tree-ring 
chronology

14C production 
rate

Last 12,000 yrs 88-yr, 208-yr, 
2304-yr

Vonmoos et al., 
2006; 
Vonmoos, 
2005 Ph.D. 
thesis

GRIP 10Be 10Be 
production 
rate

304–9315 yr 
B.P.

88-yr, 205-yr

Horiuchi et al., 
2008)

Dome Fuji, 
Antarctica

10Be 10Be concen-
tration + flux

700-1900 A.D. ~200-yr

(1) The related 1500-yr scale (broadband 1000-2500 yr)

Bond et al., 
2001

N. Atlantic Hermatite-
stained grains

Ice-rafting 
events

Holocene “1500-yr”

Bianchi and 
McCave, 
1999

N. Atlantic Sortable silt 
grain size 
(10–63 μm)

Iceland-
Scotland 
Overflow 
water

Holocene 1500-yr

Farmer et al., 
2008

N. Atlantic Mg/Ca ratios in 
G. bulloides

SST Last 12 kyr 500-yr

Andrews et al., 
2009

Northern 
Iceland 
(multi-sites)

X-ray 
diffraction 
analysis of  
<2 mm 
sediment 
fraction

Drift ice Last 12 kyr 670-yr

Hu et al., 2003 Arolik Lake 
(SW Alaska)

Biogenic silica Aquatic 
productivity

Last 15 kyr 1500-yr?, 950-
yr, 195-yr

Wollenburg et 
al., 2007

Arctic Ocean; 
Eurasian 
Basin

Fischer α Biodiversity of 
benthic 
foraminifera

Last 24 kyr 1.57-kyr, 0.76-
kyr (1.16-kyr, 
0.54-kyr 
Holocene)

Kim et al., 
2007

Off NW Africa Alkenone, 
δ 18O (G. 
bulloides)

SST, upwelling 
intensity, 
subtropical 
gyre

Last 10 kyr 2–3-kyr

(table continues)
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Table A1. (Continued)

Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

Moy et al., 
2002

Lake 
Pallcacaocha 
(S. Ecuador)

Red-color 
intensity

ENSO activity Holocene 1500-yr, 
2000-yr

(2) North Atlantic + Greenland + Iceland

Stuiver et al., 
1995; 
Grootes and 
Stuiver, 1997

GISP2 δ 18O in ice Surface 
temperature

Holocene part 210-yr, 70-yr, 
11-yr, 6.3-yr

Yiou et al., 
1997

GRIP δ 18O in ice Surface 
temperature

Holocene part 2-kyr, 180-yr, 
150-yr, 
120-yr

Ram and Stolz, 
1999

GISP2 Laser-light 
scattering 
from ice

Atmospheric 
dust

92–14 kyr B.P. 91-yr, 197-yr + 
distributions

Mayewski et 
al., 1997

GISP2 Polar circula-
tion index 
(glaciochemi-
cal data)

Atmospheric 
circulation

Last 110 kyr 1450-yr

Fischer and 
Mieding, 
2005

North 
Greenland 
Traverse 
(NGT) ice 
cores

Na+ 

concentration
Atmospheric 

circulation
1066–1993 

A.D.
10.4-yr, 62-yr

Andrews et al., 
2003

North Iceland Sediment 
magnetic 
property, 
grain size

N. Atlantic 
oceano-
graphic 
conditions

Last 12 kyr ~200-yr, 
125-yr, 88-yr

Moros et al., 
2006

North Iceland Quartz content Drift ice Last 12 kyr 1.3-kyr, 
75-80-yr

Sicre et al., 
2008

North Iceland Alkenones SST Last 2000 yr 20-25 yr

(3) Northern Europe + Europe

Allen et al., 
2007

Finnmark, 
Norway

Pollen + geo-
chemical data

Vegetation 
history

Holocene 1810-yr, 1650-
yr, 190-yr

Knutz et al., 
2007

NW Europe/
British Ice 
Sheet

Ice-rafted 
debris events

Glacial margin/
meltwater 
surges/
Atlantic MOC

10–27 kyr B.P. 180–220-yr

Haltia-Hovi et 
al., 2007

Lake 
Lehmilampi, 
E. Finland

Varve thickness Lake 
sedimentation
-hydrology

Last 2000-yr Match Δ 14C 
series

Swindles et al., 
2007

Fermanagh, N. 
Ireland

Peat humifica-
tion and plant 
microfossil

Hydrology 2850 yr BC to 
1000 A.D.

265-yr + others

(table continues)
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Table A1. (Continued)

Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

Chambers and 
Blackford, 
2001

Four mire sites 
in the UK

Wet-dry index Hydrology Last 2000-yr 80-yr, 200-yr

Holzkamper et 
al., 2004

Spannagel 
Cave, 
Austrian Alps

δ 18O in 
stalagmite

Hydrology 131–118 kyr 
B.P.

197-yr, 109-yr, 
21-yr

Mangili et al., 
2007

Pianico 
paleolake, 
Southern Alps

δ 18O in calcite 
varve

Hydrology 15,500 yr 
during 
Interglacial of 
400 kyr B.P.

780-yr, 125 to 
195-yr

(4) North America

Yu and Ito, 
1999

Rice Lake, 
North Dakota

Mg/Ca ratio of 
ostracode 
shells

Salinity/
drought 
frequency

Last 2100-yr 400-yr, 200-yr, 
130-yr, 
100-yr

Anderson, 
1992

Elk Lake, 
Minnesota

Varve thickness Aeolian 
activity/wind

2000-yr in 7.3 
kyr-5.3 kyr B.P.

200-yr,  20 to 
25-yr

Dean, 1997 Elk Lake, 
Minnesota

%Al, %Na in 
varved lake 
sediments

Aeolian activity Last 1500-yr 400-yr, 84-yr

Wang et al., 
2003

Fox Hill and 
Keller Farm 
loesses

Lightness para-
meter, % car-
bonate, %Fe

Persistent heat 
and moisture 
supply

30-14 kyr B.P. 800 to 1000-yr, 
450 to 550-yr, 
350 to 390-yr

Fortin and 
Lamoureux, 
2009

Canadian 
Arctic and 
southeastern 
boreal regions

Lacustrine varve 
and boreal 
tree-ring width 
series

Hydrology + 
AMO

1550-1986 
A.D.

64-yr,  20 to 
40-yr

Schimmelmann 
et al., 2003

Santa Barbara 
basin

Six major grey 
flood deposits 
in varved 
sediments

Floods and 
droughts 
cycle

Last 2000-yr 200-yr

Douglas et al., 
2007

Gulf of 
California

Biogenic silica, 
carbonate, 
TOC

Primary 
productivity, 
dissolution 
cycles

Last 10000-yr 150-yr, 200-yr, 
350-yr

Patterson et al., 
2004a, 2004b

Vancouver 
Island, 
NE Pacific

Sediment color 
(X-ray images), 
anchovy + 
herring scales

Hydrology, 
ocean 
biological 
productivity

1400-4700 yr 
B.P.

~75 to 90-yr 
among others

Springer et al., 
2008

West Virginia Sr/Ca ratios and 
δ 13C values 
in stalagmite

Hydrology, 
droughts

Last 7000-yr 715-yr, 550-yr, 
455-yr, 
210-yr

Hubeny et al., 
2006

Pettaquamscutt 
River Estuary, 
Rhode Island

Fossil pigment 
Bchle (Bacte-
riochloro-
phyll e)

Modes of large-
scale climate 
variations, 
NAO + AMO

1024-2004 
A.D.

95.9-yr, 38.5-
yr, 11.6-yr, 
8-yr, 5.5-yr

(table continues)
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Table A1. (Continued)

Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

Asmeron et al., 
2007

Southwestern 
U.S.

δ 18O values in 
stalagmite

Hydrology, 
circulation, 
droughts

Last 12,000-yr 1533-yr, 444-
yr, 146-yr, 
88-yr

McCabe et al., 
2008

Yellowstone 
National Park

Tree-ring and 
instrumental 
data

Hydrology, 
precipitation, 
drought

Last 820-yr ~60-yr, ~20-yr

Wilson et al., 
2007

Gulf of Alaska Tree-rind width Temperature Last 1300-yr 18.7-yr, 50.4-
yr, 90-yr, 
38-yr, 24-yr, 
14 to 15-yr, 
9 to 11-yr

Wiles et al., 
2009

Gulf of Alaska, 
Lake Erie

Tree-ring and 
lake water 
level

Hydrology, 
Lake Erie 
level

Last 265-yr 116-yr, 76-yr, 
28 to 20-yr, 
17 to 14-yr, 
12-yr, 11.2-yr

(5) Gulf of Mexico (GOM) + Caribbean, Cariaco Basin

Poore et al., 
2004

Pigmy basin, 
northern 
GOM

Abundance of 
G. sacculifer

Atlantic ITCZ 
movements

Last 5000-yr 512-yr, 180-yr

Poore et al., 
2004

Core RC12-10, 
western GOM

Abundance of 
G. sacculifer

Atlantic ITCZ 
movements

7.4 to 2.8 kyr 
B.P.

550-yr, 210-yr

Hodell et al., 
2001 
(Yucatan 
Peninsula)

Lakes Chichan-
canab and 
Punta Laguna

Bulk density 
and δ 18O

Hydrology, 
drought 
cycles

Last 2600-yr 208-yr

Nyberg et al., 
2001, 2002

SW Puerto 
Rico

Three mineral 
magnetic 
parameters, 
δ 18O of 
planktonic 
foraminifera

Hydrology, 
drought 
cycles, SST, 
SSS

Last 2000-yr 217-yr

Black et al., 
2004

Cariaco Basin δ 18O in 
planktic        
G. bulloides

SST and ITCZ-
precip-related 
salinity

Last 300-yr 159-yr, 24-yr, 
10.9-yr

Lund and 
Curry, 2004

South of Dry 
Tortugas

Planktonic 
foraminiferal 
δ 18O

Florida current Last 5200-yr 360-yr, 190-yr, 
130-yr, 100-
yr, and 80-yr

(6) Equatorial + Tropical Africa

Russell and 
Johnson, 
2005a

Lake Edward, 
Congo

% Mg in calcite 
of lake 
sediment

Salinity/water 
balance/ITCZ 
movements

Last 5400-yr 1500-yr

Russell and 
Johnson, 
2005b

Lake Edward, 
Congo

% biogenic 
silica of lake 
sediment

Salinity/water 
balance/ITCZ 
movements

Last 5400-yr 725-yr, 125-yr, 
63-72-yr, and 
others

(table continues)
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Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

Stager et al.,  
1997

Lake Victoria, 
East Africa

Abundance of 
diatom 
species in 
lake sediment

Aridity/lake 
levels

Last 13 kyr 2350- to 2550-
yr, 1400-yr, 
and others

Kuhlmann et 
al., 2004

Off NW Africa Potassium 
intensity in 
sediment core

Proxy of terrig-
enous supply 
to marine sed-
iment

Last 9 kyr 900-yr

Hanebuth and 
Henrich, 2009

Off NW Africa 
(Mauritania)

Dust supply/
accumulation

Turbidite 
activity

Last 11 kyr 900 ± 150-yr

(7) Indian Monsoon

Neff et al., 
2001

Hoti Cave, 
northern 
Oman

δ 18O in dated 
speleothems

Regional 
precipitation/ 
Indian 
monsoon

9–6 kyr B.P. 1018-yr, 226-yr, 
28-yr, 10.7-yr, 
9-yr (untuned); 
205-yr, 87-yr 
(tuned)

Agnihotri et al., 
2002

Northeastern 
Arabian Sea

Biogenic 
proxies (Corg 
and N) and 
%Al

Intensity of 
Indian 
monsoon

Last 1200-yr 200 ± 20-yr, 
105 ± 15-yr, 
60 ± 10-yr

Gupta et al., 
2005

Northwestern 
Arabian Sea, 
off Oman

Abundance of 
planktic         
G. bulloides

Indian 
monsoon

Last 11.1-kyr 1550-yr, 152-yr, 
137-yr, 114-
yr, 101-yr, 89, 
83, and 79-yr

Fleitmann et 
al., 2003

Qunf Cave, 
southern 
Oman

δ 18O in dated 
speleothems

Regional 
precipitation/
Indian 
monsoon

Last 11 kyr 
(with some 
data gaps)

220-yr, 140-yr, 
107-yr, 11- 
and 10-yr 
(untuned)

Burns et al., 
2002

Salalah region, 
Oman

Layer 
thickness, 
δ 13C and 
δ 18O

Regional 
precipitation/
monsoon 
rainfall

Last 780-yr 204-yr, 97-yr, 
19.8-yr, 16.1-
yr, 12.8-yr, 
and 6.6-yr (in 
δ 18O spectra)

(8) East Asia + East Asian monsoon

Wang et al., 
2005

Dongge Cave, 
southern 
China

δ 18O in 
absolutely 
dated 
stalagmite

Regional 
precipitation/
strength of 
Asian 
monsoon

Last 9000-yr 558-yr, 206-yr, 
159-yr

Cosford et al., 
2008

LianHua Cave, 
Hunan, China

δ 18O in 
absolutely 
dated 
stalagmite

Regional 
precipitation/
strength of 
Asian 
monsoon

Last 7000-yr 220-yr, 83-yr, 
50-yr

(table continues)
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Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

Zhang et al., 
2008

WanXiang 
Cave, Gansu, 
China

δ 18O in 
absolutely 
dated 
stalagmite

Regional 
precipitation/
strength of 
Asian 
monsoon

Last 1810-yr 170-yr, 10.5-yr, 
6.4-yr, 5.5-yr

Zhong et al., 
2007

S. Tarim Basin, 
Xinjian, NW 
China

Mean grain 
size and other 
measures

Hydrology/ 
wet-dry 
cycles

Last 4000-yr 200-yr, 120-yr, 
90-yr, and 
others

Lim et al., 2005 Cheju Island, 
Korea

Eolian quartz 
flux

Hydrology/ 
Asian dust

Last 6500-yr 1137-yr, 739-
yr, 214-yr, 
162, 137, 
127, 111-yr

Ji et al., 2005 Qinghai Lake, 
Qinghai-
Tibetan 
Plateau

Visible reflec-
tance (redness 
record/iron 
oxide content)

Hydrology/ 
Asian and 
Indian 
monsoon

Last 18 kyr 293-yr, 200-yr, 
163-yr, 123-
yr

Ji et al., 2009 Qinghai Lake, 
Qinghai-
Tibetan 
Plateau

Abudance of 
bacteriophae
ophytina

Productivity of 
anoxygenic 
phototrophic 
bacteria (APB)

Last 18 kyr Durations of 
APB peaks: 
60- to 70-yr, 
90- to 100-yr, 
130- to 140-yr, 
160- to 170-yr, 
200- to 210-yr

Xu et al., 2006 Hongyuan, 
eastern 
Qinghai-
Tibetan 
Plateau

δ 18O in peat 
cellulose

Temperatures Last 6000-yr Quasi 100-yr

Tan et al., 2003 Shihua Cave, 
Beijing

Staglamite 
growth layers

Temperatures Last 2650-yr 206-yr, 325-yr

Hong et al., 
2000, 2001

Jinchuan, 
northeastern 
China

δ 18O and 
δ 13C in peat 
cellulose

Temperature 
and 
hydrology

Last 6000-yr  207 (205)-yr 
and other cen-
tennial to mil-
lennial scales

Wei et al., 
2008

Beijing, China Instrumental Summer 
rainfall

1724–2005 
A.D.

70-yr, 31-yr, 
20-yr

Shen et al., 
2006

Eastern China Documentary 
records–
Drought/ 
flood Index

Summer 
rainfall/PDO

1470–2000 
A.D.

75- to 115-yr, 
50- to 70-yr

Chu et al., 
2008

Eastern China/
Korea

Documentary 
records

Snow events Last 2000 years 281-yr, 103-yr

Raspopov et 
al., 2008

Tienshan 
Mountains 
and Tibetan 
Plateau

Tree-ring width Summer 
temperature/ 
precipitation

600–2000 A.D. ~200-yr

(table continues)
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Table A1. (Continued)

Reference Location Data Proxy Time intervals
Scales of vari-

ability detected

(9) Other regions and proxies (examples only)

Eichler et al., 
2009

Belukha 
Glacier, 
Siberian Altai 
Mountain 
region

δ 18O from 
glacier ice 
core

Temperature 
(March-
November)

1250–2000 
A.D.

205-yr, 86-yr, 
10.8-yr

Sano et al., 
2009

Northern 
Vietnam (Mu 
Cang Chai)

Tree-ring index Hydrology, 
droughts

1470–2004 
A.D.

54- to 79-yr, 
3.2-yr, 2.5-yr, 
2.0-yr

Ruzmaikin et 
al., 2006

Nile River Water level Hydrology 622–1470 A.D. 88-yr, 260-yr

van Beynen et 
al., 2008

Briars Cave, 
central 
Florida

δ 13C + Sr in 
stalagmite

Soil 
productivity/ 
precipitation

Last 4000-yr 170- to 180-yr 
and other 
scales

Dima et al., 
2005

Rarotonga 
coral, Cook 
Islands, South 
Pacific

Sr/Ca in coral SST 1727–1996 
A.D.

~80-yr, ~25-yr

Gedalof et al., 
2002

Pacific Ocean 
(north to 
south)

PC1 from 
Multiproxy—
tree rings + 
corals

PDO (Oct–
Mar) proxy

1840–1990 
A.D.

~85-yr, ~23-yr, 
~20-yr

Agnihotri et al., 
2008

Peru margin Ti Ocean 
productivity

Last 2000-yr 250-yr, 83-yr 
22- to 24-yr, 
11- to 9.4-yr

(10) Southern Ocean and Antarctica

Lamy et al., 
2001

Core GeoB 
3313-1, 
southern 
Chile

Iron content Regional 
precipitation/ 
variability + 
shift of 
southern 
westerlies

Last 7700-yr 1750 yr + 
1340-yr (ca. 
1500-yr 
band), 950-yr 
+ 820-yr (ca. 
900-yr band)

Nielsen et al., 
2004

Site TN057-17, 
Polar Front, 
East Atlantic 
Southern 
Ocean

Relative diatom 
abundances

Summer SST + 
sea ice 
presence

Last 12.5-kyr 1220-yr, 1070-
yr, 400-yr, 
150-yr

Delmonte et 
al., 2004

Vostok and 
Dome C, East 
Antactica

% coarse 
particles

Hydrology/ 
atmospheric 
circulation 
(dipolar 
oscillations)

9.8- to 3.5 kyr 
B.P.

 180- to 210-yr, 
130- to 150-
yr (Dome C); 
150- to 230-
yr, 120- to 
140-yr 
(Vostok)

(table continues)
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