AFTER nearly two weeks of snow and sub zero temperatures rivaling those of Siberia, the old joke about global warming being a good thing has had a new lease of life. So what has happened to doom-laden predictions of the world heating up as glaciers melt?
FIRST the good news. These bitter winters aren’t going to last forever. The bad news is that they will go on for the next 30 years as we have entered a mini ice age.
So says author Gavin Cooke in his book Frozen Britain. He began writing it in 2008 and it was published last year when experts were scratching their heads at the cause of the bitter winter of 2009/10 which brought England to a standstill. Some said it was a one-off event, with experts predicting snowfall becoming increasingly rare.
Now, 12 months on, the current sub zero spell makes last year look just a bit chilly. Just like kids enjoying ‘snow days’ off school, Gavin ought to be delighted with the cold snap. After all, he can justifiably say ‘I told you so. But he’s as glum as the rest of us.
“I’m getting sick of it myself,” he said.
When Gavin, 48, of Monkseaton, North Tyneside, began writing the book the acclaimed documentary ‘An Inconvenient Truth’ by former US Vice President Al Gore about global warming, was still fresh in the memory. It detailed how carbon emissions were contributing towards the melting of the polar ice caps causing the world to heat up.
Like Gore, Gavin’s interest in climate change went back to college when he studied energy and environment at what was then Newcastle Polytechnic.
He said: “The more I’ve looked into it the more fascinating it has become.”
He is quick to admit that he hasn’t got the scientific background of those who have spent a lifetime studying climate change. What he has brought to the table is his enthusiasm for the subject, his tracking of the arguments and a desire to make sense of a blizzard of information, so to speak.
To simplify, the basis of his theory seems to be sunspot activity, or rather the lack of it. Sunspots are dark, cooler patches on the sun’s surface that come and go in cycles.
They were absent in the 17th century - a period called the “Maunder Minimum” named after the scientist, Edward Maunder, who spotted it. Crucially, it has been observed that the periods when the sun’s activity is high and low are related to warm and cool climatic periods. The weak sun in the 17th century coincided with the so-called Little Ice Age. The Sun took a dip between 1790 and 1830 and the earth also cooled a little. It was weak during the cold Iron Age, and active during the warm Bronze Age.
Throughout the 20th century the sun was unusually active, peaking in the 1950s and the late 1980s. Recently sunspot activity has all but disappeared.
Gavin said: “It is the sun’s energy which keeps the earth warm and the amount of energy the earth receives isn’t always the same. I’ve looked at the evidence for global warming and while I understand and agree with a lot of it, there has been a lot missed out. A major factor is the activity of the sun.”
There is also solar wind - streams of particles from the sun - which are at their weakest since records began. In addition, the Sun’s magnetic axis is tilted at an unusual degree. This is not just a scientific curiosity. It could affect everyone on earth and force what for many is unthinkable - a reappraisal of the science behind global warming.
It was thought that carbon dioxide emissions rather than the sun was the bigger effect on climate change. Now a major re-think is taking place.
The upshot is that Gavin is not alone in predicting we face another 30 frozen years, each getting progressively colder than the last.
Particularly hard hit will be Britain and Northern Europe and it is only after the 30-year period that the effects of man-made global warming will kick in. He said: “When I was writing this it was new. To be honest I was kind of winging it, piecing it together. But recently there has been a sea change among some pretty significant figures.”
Glascow Scotland - the best way to travel this year once again
They include renowned international climatologist Mike Lockwood of the University of Reading. In 2007 he said the cyclical change in the Sun’s energy was not responsible for climate change. In April this year, writing in the New Scientist Magazine, he did a U-turn and said it was. After a study, he and his team concluded that recent cold British winters have coincided neatly with the biggest fall off in the sun’s activity for a century, contradicting the accepted view that carbon dioxide emissions and other greenhouse gases are likely to warm our climate.
Gavin laughed: “Looking at the weather outside, sometimes I really wish I was wrong. But we had better get used to it.”
Frozen Britain: How the Big Freeze of 2010 is the Beginning of Britain’s New Mini Ice Age by Gavin Cooke is published by John Blake Publishing Ltd and is out now priced at 7.99 pounds. Also available on Amazon. See post here.
In Cancun, the activists have traded their sackcloth and ashes for sun-wear and tropical breezes
This global-warming/climate change stuff is a great racket. Over in England right now, they’re locked in the jaws of a very early freeze-up. The roads are iced, the plows overworked, and people are angry. But there’s a precious subset of the English population that are not enduring the frigid and premature torments of a northern winter. They’re the climate-change activists, bureaucrats, politicians, puppeteers and NGOs - the class of professional alarmists who’ve been banging on about global warming for close on two decades now. This bunch has exempted itself from the rigors of English November, traded their sackcloth and ashes for sun-wear and tropical breezes.
They’re toasting their pasty, righteous, caterwauling epidermi on the golden hot sands of Cancun, Mexico, flopped out amid the bikinis and barbeques while they attempt to spell out a future of rationing and want for all the rest of us. Flown there on taxpayer or foundation money, meeting up with all their buddies from the bust that was Copenhagen, the grim, grey priesthood of “sustainable” living are convening in one of the great sybaritic strips of the entire Western world. The monks are in the cathouse.
But hey, if you’re going to do Armageddon - do it in Cancun. The apocalypse at the all-you-can-eat buffet. Parasailing to Armageddon.
Does not one of the great minds decoding next century’s weather see the brain-splitting contradiction of holding a conference warning of the imminent threat of global warming in a venue that mainly exists because people fly there to get warmer? That’s right, people spend money to fly to Cancun mainly because it’s warmer there than where they live. In essence, Cancun is what the global warming crowd are, otherwise, warning us about.
Perhaps at some level of instinct they do know. Perhaps they know that this show of theirs is on its last legs, the jig is up, the great game is over. After the unsuccessful 2009 Copenhagen conference, they had to have realized that even Al Gore and all Al Gore’s grim little men would never be able to put the whole rickety, tendentious machine back together again. After Copenhagen, and especially after Climategate, even the true believers must have lost heart. Witness this year’s confabulation. Notice who’s not there?
Last year, even the Golden One, Barack Obama, swept dramatically into Denmark. It was the venue for all the A-list politicians. Prime ministers and presidents were everywhere. This year, the world’s leaders have stayed away. Even the press, whose Cancun presence is down considerably compared to Copenhagen, smells the decay of a cause.
Some countries have made it clear that they no longer are even pretending to play the global-warming abatement game. “Japan will not inscribe its target under the Kyoto protocol on any conditions or under any circumstances,” declared Jun Arima, deputy director-general for environmental affairs at Japan’s Ministry of Economy, Trade and Industry. Given that his was the country where the Kyoto Protocol was signed, it’s a powerful blow to the Gore-ish forces. Perhaps Japan will get one of those cute Fossil of the Day Awards that Canada so excels at collecting.
Could this be the last global warming conference? It’s possible. The environmentalists and the activists have had a tin ear and a surplus of righteousness from the beginning. But there’s something extravagantly out of key, even for them, in holding their great “Save the Planet” revival at Cancun - up to now famous for Spring Break and as a hangout for louche Hollywood types and cleavage researchers. It signals they’ve lost the will to pretend. And with Japan having walked away from the whole idea of Kyoto, it’s hard to see how they’ll work up the steam for another holiday next year.
Rex Murphy offers commentary weekly on CBC TV’s The National, and is host of CBC Radio’s Cross Country Checkup.
The Scientific Alliance, December 3, 2010 Newsletter
Average temperatures or temperature ranges are often used as a simple proxy for climate. In combination with some description of rainfall, they encapsulate the essentials: in the Mediterranean it is typically hot and dry in summer and cooler and wetter in winter, and a continental climate is hot and dry in summer and cold with snow in winter, for example. But quantifying climate more precisely is fraught with difficulty.
Records kept over the years give us historical figures to make comparisons between average temperatures then and now. This sounds simple, but the very concept of an average temperature has no simple definition. First, we have to realise that temperature is what is known as an intensive property of matter. This simply means that it does not depend on the nature or size of the material for which it is measured.
So, for example, air and a body of water may have the same measured temperature at a particular moment, but their behaviour is very different. Air has a low thermal capacity (it take little heat to change its temperature), while water has a high thermal capacity and its temperature changes relatively slowly. In the present long cold spell in western Europe, ponds and lakes need a period of consistently sub-zero temperatures before they begin to freeze. Equally, as air temperatures rise, the ice may take many days to melt. A given volume of water has a very different thermal energy content than the same volume of water. This can be easily quantified and, in contrast to temperature, is an extensive property.
When trying to average temperatures, the first obvious rule is that the measurements must all be of the same material: you cannot average air and water temperatures, for example, and get a meaningful answer. This in itself is pretty obvious and, in discussing climate change, air and water temperatures are considered separately. However, the difficulties with averaging do not stop there.
Even if temperatures are measured under carefully controlled conditions as expected for official records, they will fluctuate quite rapidly depending on wind direction and strength, cloud cover, time of day etc. The convention is to measure a maximum and minimum shade temperature each day. These readings can then be used to provide average maxima and minima per month or year, or combined to give an overall ‘average temperature’. And the figures for individual stations can themselves be combined to give national, regional and global averages.
These figures tell us something, of course, but the desire to quantify also obscures the detail. Say, for example, that place X has an average maximum temperature of +15C and an average minimum of +5 and place Y registers +25 and -5. Both have an overall average of +10, but the actual climate experienced would be quite different. In a similar way, measured air temperatures in the shade bear little relationship to the apparent temperature in the sun. Although the measured shade air temperature might be the same whether or not the sun is shining, the effect on the Earth’s surface of the sunlight is significant and, once the ground has been warmed, it will release its heat at night to keep the air somewhat warmer, at least temporarily.
Simple averaging can be deceptive in other ways as well. Depending on the weather conditions or time of year, either the maximum or minimum temperature might be more typical of the day as a whole, yet both are implicitly given equal weight. Nevertheless, it is arguable that such issues are not important when comparing time series of measured temperatures. For example, the Central England Temperature record (CET) is the longest continual record available, with monthly means being recorded from 1659 and daily means logged from 1722. Looking at this it is easy to see the recorded range and note that temperatures do indeed appear to have been higher in the latter part of the 20th Century, although they have dipped again since 2000. It is the changes which are significant rather than the absolute values, provided that all measurements are strictly comparable.
This, of course, introduces yet another concern. The same instruments would not have been used in the 17th Century as 300 years later and, with the best will in the world, it is difficult to guarantee that no artefacts have been introduced. Equally, it is hardly conceivable that the surroundings of the measuring stations will be unchanged over this period (although hopefully none of the weather stations is now in an urban area, on tarmac or near heat sources as some have been found to be in other countries).
A final problem to bring up with averages is that, to avoid giving a misleading picture, data should be taken from stations spread evenly over the Earth’s surface. This is certainly not the case. In particular, there are large areas of the Arctic and Antarctic with no data being collected. The same is true for the open oceans, where collecting surface water temperatures reliably is enough of a challenge, without trying to measure air temperatures.
What we are left with then is an incomplete record of imperfect data, from which conclusions about climate change are drawn. This is the basis of the ‘global warming’ message. But actually the concept of global average temperature is again a little misleading, since the summary of the IPCC Fourth Assessment Report shows that the warming pattern is regional rather than global. Warming over the 20th Century was recorded on all continents apart from Antarctica, but was considerably greater in the northern than the southern hemisphere. Given the greater proportion of ocean in the south, this is not surprising.
But global averages are still the main measure and this is the time of year when preliminary conclusions are drawn about the current year, as the annual meeting of the UN Convention on Climate Change takes place. So far, the message being put out by the World Meteorological Organization is that 2010 is likely to be among the warmest three on record. Based on the temperature record, this is doubtless correct, but how meaningful is this?
The WMO points towards record high temperatures in Russia, China and Greenland to support its case. Meanwhile anyone mentioning record lows and pointing out that new records are set nearly every day somewhere in the world is told that this means nothing. In practical terms, life has to go on and adapt to whatever climatic conditions turn out to be. Measuring temperatures remains a useful thing to do, but we must be careful not to read too much into the average figures. And we should never forget that, whatever the temperature is, we still have only a hazy idea about what controls it. Read more here.
Icecap Note: See here how even James Hansen agrees.
The annual climate summit opened in Cancun, Mexico, this week. A few days earlier, while releasing a new report, Climate Change and India: A sectoral and regional analysis for the 2030s, environment and forests minister Jairam Ramesh emphasised, “It is imperative” that India has “sound, evidence-based assessments on the impacts of climate change”. The report claims that India will soon be able to forecast the timing and intensity of future monsoons that are so critical to its agricultural base.
Could 250 of India’s top scientists be wrong when they say their computers will soon be able to predict summer monsoon rainfall during the 2030s, based on projected CO2 trends? Do scenarios generated by climate models really constitute “sound, evidence-based assessments”? We do not believe it is yet possible to forecast future monsoons, despite more than two centuries of scientific research, or the claims and efforts of these excellent scientists. The Indian summer monsoonal rainfall remains notoriously unpredictable, because it is determined by the interaction of numerous changing and competing factors, including: ocean currents and temperatures, sea surface temperature and wind conditions in the vast Indian and Western Pacific Ocean, phases of the El Nino Southern Oscillation in the equatorial Pacific, the Eurasian and Himalayan winter snow covers, solar energy output, and even wind direction and speed in the equatorial stratosphere some 30-50 km aloft.
Relying on computer climate models has one well-known side effect: Garbage in, gospel out. Current gospel certainly says CO2 rules the climate, but any role played by CO2 in monsoon activity is almost certainly dwarfed by other, major influences. Computer climate models have simply failed to confirm current climate observations, or project future climatic changes and impacts.
Both Indian and global monsoons have declined in strength and intensity over the last 50 years, and this reality largely contradicts climate model forecasts that say monsoonal rainfalls will increase. It is equally well known that climate models have been unable to replicate the decadal to multi-decadal variations of monsoonal rainfalls. Fred Kucharski and 21 other climate modellers challenge the alleged CO2-monsoon linkage. Using World Climate Research Programme climate model analyses, they conclude that “the increase of greenhouse gases concentrations has had little impact on the [observed] decadal Indian monsoonal rainfall variability in the twentieth century.” Perhaps the Indian scientists missed their report.
No climate models predicted the severe drought conditions for the 2009 Indian monsoon season - followed by the extended wetness of the 2010 season. The inability to foresee this 30-50% precipitation swing in most regions underscores how far we really are from being able to forecast monsoons, for next year, 2030 or the end of the century. Another recent analysis, by scientists from National Technical University in Athens, found that computer model projections did not agree with actual observations at 55 locations around the world. Computer forecasts for large spatial areas, like the contiguous US, were even more out of sync with actual observations than is the case with specific locations!
Ramesh says India hopes to offer a middle ground and present a less “petulant and obstructionist” perception during climate negotiations in Cancun. But if he believes the new report and claims of imminent forecasting ability will make this happen, we fear he is mistaken. “What-if” scenarios based on CO2-driven computer models are hardly a sound basis for negotiations, energy policies, agricultural planning or changed perceptions.
The impotence of current climate models is not surprising. As climate scientists, we know computer climate models are very useful for analysing how Earth’s complex climate system works. But models available today are simply not ready for prime time, when it comes to predicting future climate, monsoons or droughts. Our understanding of how weather and climate vary from year to year is still very immature, and it will be years (if not decades) before we resolve fundamental questions of how various forces interact to cause those changes.
Computer models still cannot accurately simulate or predict regional phenomena like the Indian summer monsoon rainfall. Even when model outputs agree with certain observations, we cannot be certain that the models did so for the right reasons. Considering the myriad factors that influence and alter weather and climate regimes, it is clear that climate models cannot make meaningful projections about future events, especially if they focus on the single factor of rising atmospheric CO2 levels.
Science and society will pay a very dear price, if political agendas continue to generate and legitimise false and pretentious computer outputs that have no basis in reality. How much better it would be if researchers focused on improving our ability to accurately forecast monsoons, droughts and other events just a few weeks or months in advance. That would really give farmers and others a chance to adapt, minimise damages and actually benefit from being better prepared.
Willie Soon is a solar physicist and climate scientist at Harvard-Smithsonian Centre for Astrophysics. Madhav Khandekar is a former research scientist from Environment Canada and served as an expert reviewer for IPCC’s 2007 reports.
Update: Bureaucrats Gone Wild in Cancun. The United Nations Climate Change Conference is meeting in Cancun, Mexico from November 29—December 10 2010 where bureaucrats will work to transfer wealth and technology from developed to developing nations by raising the cost of traditional energy. But before these international bureaucrats get to “work”, they decided to throw a lavish party for themselves.
-----------
Today, Nov. 29, marks the beginning of the Cancun COP (Conference of the Parties [to the Kyoto Protocol]). This is the 16th meeting of the nearly two hundred national delegations, which have been convening annually since the Kyoto Protocol was negotiated in 1997 at COP-3.
This conference promises to be another two-week extravaganza for some 20,000 delegates and hangers-on, who will be enjoying the sand, surf, and tequila-sours —mostly paid for by taxpayers from the U.S. and Western Europe. For most delegates, this annual vacation has become a lifetime career: it pays for their mortgages and their children’s education. I suppose a few of them actually believe that they are saving the earth—even though the Kyoto Protocol (to limit emission of greenhouse [GH] gases, like CO2, but never submitted for ratification to the U.S. Senate) will be defunct in 2012 and there is—thankfully—no sign of any successor treaty.
But never fear: the organizers may “pull a rabbit out of a hat” and spring a surprise on the world. They will likely announce that they have conquered the greenhouse gas hydrofluorocarbon (HFC). Now, HFCs are what replaced HCFCs, which in turn replaced CFCs, thanks to the Montreal Protocol of 1987. This succession of chemical refrigerants has reduced ozone-destroying potential; but unfortunately they are all GH gases. So now HFCs must be eradicated, because a single molecule of HFC produces many thousand times the greenhouse effect of a molecule of CO2. What they don’t tell you, of course, is that the total forcing from the HFCs is less than one percent of that of CO2, according to the IPCC (see page 141). So “slaying the dragon” amounts to slaying a mouse—or something even smaller. But you can bet that it will be trumpeted as a tremendous achievement and will likely invigorate the search for other mice that can be slain.
Of course, industry has no objection to this maneuver of invoking the Montreal Protocol as a means of reducing the claimed GH-gas effects of global warming. It means more profits from patents, new manufacturing facilities, and sales—and it will eliminate the bothersome competition from factories in India, China, and Brazil that are still manufacturing HCFCs, and in some cases even CFCs. Very likely, these nations will oppose the maneuver. But so should consumers. It will mean replacing refrigerants in refrigerators, air conditioners, and automobiles—at huge cost and to little effect. We don’t even know yet what chemical will replace HFC and how well it will work in existing equipment.
But nobody is supposed to notice this, it is hoped, amid the clamor for an international agreement, or any kind of agreement, really—even if it means misusing the Montreal Protocol. Remember that HFCs have no effect on ozone and therefore are not covered by the 1987 Montreal Protocol.
At this point, it is worth remembering how little has been accomplished by the Montreal Protocol—that “signal achievement” of the global environmental community. As U.S. negotiator Richard Benedick brags (in his book Ozone Diplomacy), the Montreal agreement was achieved by skillful diplomacy rather than by relying on science.
When the Montreal Protocol was negotiated and signed in 1987, there was no evidence whatsoever that CFCs were actually destroying stratospheric ozone. At that time, there were no published observations (by leading Belgian researcher Zander or by others) of any increase in stratospheric chlorine, thereby indicating that natural sources, like salt from ocean spray and volcanoes, were dominating over the human contribution of chlorine from CFCs. The scientific evidence changed only in 1988 (thanks to NASA scientist Rinsland), a year after the Montreal Protocol was signed.
Nevertheless, the hype of the Antarctic Ozone Hole (AOH), which was discovered, only by chance, in 1985, was driving global fears of a coming disaster. In the U.S., there was talk about an Arctic ozone hole opening up. There was even a scare about a “hole over Kennebunkport,” President Bush’s summer home. And of course, the EPA, as usual, was hyping the whole matter to the White House. No wonder that poor George Bush (the elder) agreed to phase out CFCs immediately.
And who still remembers all the lurid tales of blind sheep in Patagonia and of ecological disasters in the Southern Ocean—all the result, supposedly, of the AOH. It turned out later that the unfortunate sheep had pink-eye.
The Montreal Protocol prohibition on manufacturing CFCs has indeed led to the reduction of the atmospheric content of these long-lived CFC molecules. But what about stratospheric ozone itself? There has been little effect on the AOH—just annual fluctuations. And according to the authoritative reports of the World Meteorological Organization, the depletion at mid-latitudes may have been only about 4% over a period ending in 1992. There seems to have been no further depletion since 1993, even while stratospheric chlorine levels were still rising. Something doesn’t quite check out here.
Whatever the cause of the observed 4% ozone depletion may be, compare this piddling amount to the natural variability of total atmospheric ozone, as measured carefully by NOAA: on the order of 100% or more from day to day, seasonal change of 30% to 50%, and an eleven-year sunspot-correlated variation on the order of 3%.
And to top it off, there has been no documented increase at all in solar ultraviolet (UV-B), the radiation that produces sunburn and can lead to skin cancer. All of the monitoring so far has shown no rise over time—and therefore no biological effects due to ozone depletion.
And in any case, theory tells us—and measurements agree—that a 4% depletion amounts to an increase in solar UV equivalent to moving 50 miles to the south, at mid-latitudes. Measured UV-B values increase by 1,000% in going from the pole to equator, as the average solar zenith angle increases.
So look for a “breakthrough” announcement from Cancun, as once again our intrepid negotiators will have “saved the climate”—maybe. In addition to timing and cost issues, some countries will insist that HFCs have no impact on the ozone layer and thus should be handled under the United Nations climate change talks rather than the Montreal Treaty.
A State Department official dismissed that as a legalistic argument and said that the ozone treaty could and should be used to achieve broader environmental objectives. “What we’ve found is that the Montreal Protocol has been a very effective instrument for addressing global environmental problems,” said Daniel A. Reifsnyder, the nation’s chief Montreal Protocol negotiator, in an interview. “It was created to deal with the ozone layer, but it also has tremendous ability to solve the climate problem if people are willing to use it that way.”
Mario Molina, the Mexican scientist who shared the Nobel Prize in chemistry for his work in identifying the role of chlorofluorocarbons in depleting stratospheric ozone, said that extending the Montreal Protocol to include HFCs could reduce the threat of climate change by several times what the Kyoto Protocol proposes. (Evidently, he has not read the IPCC report in which he is listed as a lead author.) “We understand it’s a stretch to use an international agreement designed for another purpose,” he said. “But dealing with these chemicals and using this treaty to protect the planet makes a lot of sense.”
Maybe Dr. Molina should stick to chemistry.
Atmospheric physicists S. Fred Singer is Professor Emeritus of Environmental Sciences at the University of Virginia and founding director of the US Weather Satellite Service (now NESDIS-NOAA).